Step
*
1
of Lemma
metric-weak-Markov
.....assertion.....
1. [X] : Type
2. d : metric(X)
3. mcomplete(X with d)
4. x : X
5. y : X
6. ∀z:X. ((¬z ≡ x) ∨ (¬z ≡ y))
⊢ ∀r:ℝ. ((¬(r = mdist(d;x;y))) ∨ (¬(r = r0)))
BY
{ ((D 0 THENA Auto) THEN Assert ⌜∀n:ℕ+. ((mdist(d;x;y) < (r1/r(n))) ∨ (r < mdist(d;x;y)) ∨ (r0 < r))⌝⋅) }
1
.....assertion.....
1. [X] : Type
2. d : metric(X)
3. mcomplete(X with d)
4. x : X
5. y : X
6. ∀z:X. ((¬z ≡ x) ∨ (¬z ≡ y))
7. r : ℝ
⊢ ∀n:ℕ+. ((mdist(d;x;y) < (r1/r(n))) ∨ (r < mdist(d;x;y)) ∨ (r0 < r))
2
1. [X] : Type
2. d : metric(X)
3. mcomplete(X with d)
4. x : X
5. y : X
6. ∀z:X. ((¬z ≡ x) ∨ (¬z ≡ y))
7. r : ℝ
8. ∀n:ℕ+. ((mdist(d;x;y) < (r1/r(n))) ∨ (r < mdist(d;x;y)) ∨ (r0 < r))
⊢ (¬(r = mdist(d;x;y))) ∨ (¬(r = r0))
Latex:
Latex:
.....assertion.....
1. [X] : Type
2. d : metric(X)
3. mcomplete(X with d)
4. x : X
5. y : X
6. \mforall{}z:X. ((\mneg{}z \mequiv{} x) \mvee{} (\mneg{}z \mequiv{} y))
\mvdash{} \mforall{}r:\mBbbR{}. ((\mneg{}(r = mdist(d;x;y))) \mvee{} (\mneg{}(r = r0)))
By
Latex:
((D 0 THENA Auto)
THEN Assert \mkleeneopen{}\mforall{}n:\mBbbN{}\msupplus{}. ((mdist(d;x;y) < (r1/r(n))) \mvee{} (r < mdist(d;x;y)) \mvee{} (r0 < r))\mkleeneclose{}\mcdot{}
)
Home
Index