Step
*
of Lemma
mfun-strong-subtype
∀[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[A:Type].
strong-subtype(FUN(X ⟶ A);FUN(X ⟶ Y)) supposing metric-subspace(Y;d';A)
BY
{ (Intros
THEN D 0
THEN (Unhide THENW Auto)
THEN (D 6 THEN Auto)
THEN (D 0 THENA Auto)
THEN RepeatFor 2 (D -1)
THEN DVar `x'
THEN DVar `a'
THEN (EqTypeHD (-1) THENA Auto)
THEN (MemTypeCD THENW Auto)
THEN Try (ParallelLast)) }
1
1. X : Type
2. Y : Type
3. d : metric(X)
4. d' : metric(Y)
5. A : Type
6. strong-subtype(A;Y)
7. ∀a:A. ∀x:Y. (x ≡ a
⇒ (x ∈ A))
8. FUN(X ⟶ A) ⊆r FUN(X ⟶ Y)
9. x : X ⟶ Y
10. x:FUN(X;Y)
11. a : X ⟶ A
12. a:FUN(X;A)
13. x = a ∈ (X ⟶ Y)
14. x:FUN(X;Y)
⊢ x ∈ X ⟶ A
Latex:
Latex:
\mforall{}[X,Y:Type]. \mforall{}[d:metric(X)]. \mforall{}[d':metric(Y)]. \mforall{}[A:Type].
strong-subtype(FUN(X {}\mrightarrow{} A);FUN(X {}\mrightarrow{} Y)) supposing metric-subspace(Y;d';A)
By
Latex:
(Intros
THEN D 0
THEN (Unhide THENW Auto)
THEN (D 6 THEN Auto)
THEN (D 0 THENA Auto)
THEN RepeatFor 2 (D -1)
THEN DVar `x'
THEN DVar `a'
THEN (EqTypeHD (-1) THENA Auto)
THEN (MemTypeCD THENW Auto)
THEN Try (ParallelLast))
Home
Index