Step
*
1
1
1
of Lemma
near-inverse-of-increasing-function
1. f : ℝ ⟶ ℝ
2. n : ℕ+
3. M : ℕ+
4. z : ℝ
5. [n@0] : ℕ
6. ∀[m:ℕn@0]
∀a,b:ℤ.
∀k:ℕ+
(∃c:ℤ. (∃j:ℕ+ [((|f[(r(c))/j] - z| ≤ (r1/r(n))) ∧ ((r(a))/k ≤ (r(c))/j) ∧ ((r(c))/j ≤ (r(b))/k))])) supposing
((z ≤ f[(r(b))/k]) and
(f[(r(a))/k] ≤ z) and
(∀x,y:ℝ.
(((r(a))/k ≤ x)
⇒ (x < y)
⇒ (y ≤ (r(b))/k)
⇒ ((f[x] ≤ f[y]) ∧ (((y - x) ≤ (r1/r(M)))
⇒ ((f[y] - f[x]) ≤ (r1/r(n))))))) and
(((M * (b - a)) - k) ≤ m))
supposing a < b
7. a : ℤ
8. b : ℤ
9. a < b
10. k : ℕ+
11. ((M * (b - a)) - k) ≤ n@0
12. ∀x,y:ℝ.
(((r(a))/k ≤ x)
⇒ (x < y)
⇒ (y ≤ (r(b))/k)
⇒ ((f[x] ≤ f[y]) ∧ (((y - x) ≤ (r1/r(M)))
⇒ ((f[y] - f[x]) ≤ (r1/r(n))))))
13. f[(r(a))/k] ≤ z
14. z ≤ f[(r(b))/k]
15. (M * (b - a)) ≤ k
16. (f[(r(a))/k] ≤ f[(r(b))/k]) ∧ ((((r(b))/k - (r(a))/k) ≤ (r1/r(M)))
⇒ ((f[(r(b))/k] - f[(r(a))/k]) ≤ (r1/r(n))))
⊢ ∃c:ℤ. (∃j:ℕ+ [((|f[(r(c))/j] - z| ≤ (r1/r(n))) ∧ ((r(a))/k ≤ (r(c))/j) ∧ ((r(c))/j ≤ (r(b))/k))])
BY
{ (RepeatFor 2 (D -1) THENA (RWO "int-rdiv-req" 0 THEN Auto THEN nRMul ⌜r(k)⌝ 0⋅ THEN Auto)) }
1
1. f : ℝ ⟶ ℝ
2. n : ℕ+
3. M : ℕ+
4. z : ℝ
5. [n@0] : ℕ
6. ∀[m:ℕn@0]
∀a,b:ℤ.
∀k:ℕ+
(∃c:ℤ. (∃j:ℕ+ [((|f[(r(c))/j] - z| ≤ (r1/r(n))) ∧ ((r(a))/k ≤ (r(c))/j) ∧ ((r(c))/j ≤ (r(b))/k))])) supposing
((z ≤ f[(r(b))/k]) and
(f[(r(a))/k] ≤ z) and
(∀x,y:ℝ.
(((r(a))/k ≤ x)
⇒ (x < y)
⇒ (y ≤ (r(b))/k)
⇒ ((f[x] ≤ f[y]) ∧ (((y - x) ≤ (r1/r(M)))
⇒ ((f[y] - f[x]) ≤ (r1/r(n))))))) and
(((M * (b - a)) - k) ≤ m))
supposing a < b
7. a : ℤ
8. b : ℤ
9. a < b
10. k : ℕ+
11. ((M * (b - a)) - k) ≤ n@0
12. ∀x,y:ℝ.
(((r(a))/k ≤ x)
⇒ (x < y)
⇒ (y ≤ (r(b))/k)
⇒ ((f[x] ≤ f[y]) ∧ (((y - x) ≤ (r1/r(M)))
⇒ ((f[y] - f[x]) ≤ (r1/r(n))))))
13. f[(r(a))/k] ≤ z
14. z ≤ f[(r(b))/k]
15. (M * (b - a)) ≤ k
16. f[(r(a))/k] ≤ f[(r(b))/k]
17. (f[(r(b))/k] - f[(r(a))/k]) ≤ (r1/r(n))
⊢ ∃c:ℤ. (∃j:ℕ+ [((|f[(r(c))/j] - z| ≤ (r1/r(n))) ∧ ((r(a))/k ≤ (r(c))/j) ∧ ((r(c))/j ≤ (r(b))/k))])
Latex:
Latex:
1. f : \mBbbR{} {}\mrightarrow{} \mBbbR{}
2. n : \mBbbN{}\msupplus{}
3. M : \mBbbN{}\msupplus{}
4. z : \mBbbR{}
5. [n@0] : \mBbbN{}
6. \mforall{}[m:\mBbbN{}n@0]
\mforall{}a,b:\mBbbZ{}.
\mforall{}k:\mBbbN{}\msupplus{}
(\mexists{}c:\mBbbZ{}
(\mexists{}j:\mBbbN{}\msupplus{} [((|f[(r(c))/j] - z| \mleq{} (r1/r(n)))
\mwedge{} ((r(a))/k \mleq{} (r(c))/j)
\mwedge{} ((r(c))/j \mleq{} (r(b))/k))])) supposing
((z \mleq{} f[(r(b))/k]) and
(f[(r(a))/k] \mleq{} z) and
(\mforall{}x,y:\mBbbR{}.
(((r(a))/k \mleq{} x)
{}\mRightarrow{} (x < y)
{}\mRightarrow{} (y \mleq{} (r(b))/k)
{}\mRightarrow{} ((f[x] \mleq{} f[y]) \mwedge{} (((y - x) \mleq{} (r1/r(M))) {}\mRightarrow{} ((f[y] - f[x]) \mleq{} (r1/r(n))))))) and
(((M * (b - a)) - k) \mleq{} m))
supposing a < b
7. a : \mBbbZ{}
8. b : \mBbbZ{}
9. a < b
10. k : \mBbbN{}\msupplus{}
11. ((M * (b - a)) - k) \mleq{} n@0
12. \mforall{}x,y:\mBbbR{}.
(((r(a))/k \mleq{} x)
{}\mRightarrow{} (x < y)
{}\mRightarrow{} (y \mleq{} (r(b))/k)
{}\mRightarrow{} ((f[x] \mleq{} f[y]) \mwedge{} (((y - x) \mleq{} (r1/r(M))) {}\mRightarrow{} ((f[y] - f[x]) \mleq{} (r1/r(n))))))
13. f[(r(a))/k] \mleq{} z
14. z \mleq{} f[(r(b))/k]
15. (M * (b - a)) \mleq{} k
16. (f[(r(a))/k] \mleq{} f[(r(b))/k])
\mwedge{} ((((r(b))/k - (r(a))/k) \mleq{} (r1/r(M))) {}\mRightarrow{} ((f[(r(b))/k] - f[(r(a))/k]) \mleq{} (r1/r(n))))
\mvdash{} \mexists{}c:\mBbbZ{}. (\mexists{}j:\mBbbN{}\msupplus{} [((|f[(r(c))/j] - z| \mleq{} (r1/r(n))) \mwedge{} ((r(a))/k \mleq{} (r(c))/j) \mwedge{} ((r(c))/j \mleq{} (r(b))/k))])
By
Latex:
(RepeatFor 2 (D -1) THENA (RWO "int-rdiv-req" 0 THEN Auto THEN nRMul \mkleeneopen{}r(k)\mkleeneclose{} 0\mcdot{} THEN Auto))
Home
Index