Step
*
1
2
1
2
of Lemma
near-inverse-of-increasing-function
1. f : ℝ ⟶ ℝ
2. n : ℕ+
3. M : ℕ+
4. z : ℝ
5. n@0 : ℕ
6. ∀[m:ℕn@0]
∀a,b:ℤ.
∀k:ℕ+
(∃c:ℤ. (∃j:ℕ+ [((|f[(r(c))/j] - z| ≤ (r1/r(n))) ∧ ((r(a))/k ≤ (r(c))/j) ∧ ((r(c))/j ≤ (r(b))/k))])) supposing
((z ≤ f[(r(b))/k]) and
(f[(r(a))/k] ≤ z) and
(∀x,y:ℝ.
(((r(a))/k ≤ x)
⇒ (x < y)
⇒ (y ≤ (r(b))/k)
⇒ ((f[x] ≤ f[y]) ∧ (((y - x) ≤ (r1/r(M)))
⇒ ((f[y] - f[x]) ≤ (r1/r(n))))))) and
(((M * (b - a)) - k) ≤ m))
supposing a < b
7. a : ℤ
8. b : ℤ
9. a < b
10. k : ℕ+
11. ((M * (b - a)) - k) ≤ n@0
12. ∀x,y:ℝ.
(((r(a))/k ≤ x)
⇒ (x < y)
⇒ (y ≤ (r(b))/k)
⇒ ((f[x] ≤ f[y]) ∧ (((y - x) ≤ (r1/r(M)))
⇒ ((f[y] - f[x]) ≤ (r1/r(n))))))
13. f[(r(a))/k] ≤ z
14. z ≤ f[(r(b))/k]
15. ¬((M * (b - a)) ≤ k)
16. m : ℤ
17. m = (a + b) ∈ ℤ
18. j : ℤ
19. j = (2 * k) ∈ ℤ
20. f[(r(m))/j] < z
21. bb : ℤ
22. bb = (2 * b) ∈ ℤ
23. x : ℝ
24. y : ℝ
25. (r(m))/j ≤ x
26. x < y
27. y ≤ (r(bb))/j
⊢ (r(a))/k ≤ x
BY
{ (RWO "-3<" 0
THEN Auto
THEN RWO "int-rdiv-req" 0
THEN Auto
THEN (Assert (2 * a) ≤ m BY
Auto)
THEN Mul ⌜k⌝ (-1)⋅
THEN Auto) }
Latex:
Latex:
1. f : \mBbbR{} {}\mrightarrow{} \mBbbR{}
2. n : \mBbbN{}\msupplus{}
3. M : \mBbbN{}\msupplus{}
4. z : \mBbbR{}
5. n@0 : \mBbbN{}
6. \mforall{}[m:\mBbbN{}n@0]
\mforall{}a,b:\mBbbZ{}.
\mforall{}k:\mBbbN{}\msupplus{}
(\mexists{}c:\mBbbZ{}
(\mexists{}j:\mBbbN{}\msupplus{} [((|f[(r(c))/j] - z| \mleq{} (r1/r(n)))
\mwedge{} ((r(a))/k \mleq{} (r(c))/j)
\mwedge{} ((r(c))/j \mleq{} (r(b))/k))])) supposing
((z \mleq{} f[(r(b))/k]) and
(f[(r(a))/k] \mleq{} z) and
(\mforall{}x,y:\mBbbR{}.
(((r(a))/k \mleq{} x)
{}\mRightarrow{} (x < y)
{}\mRightarrow{} (y \mleq{} (r(b))/k)
{}\mRightarrow{} ((f[x] \mleq{} f[y]) \mwedge{} (((y - x) \mleq{} (r1/r(M))) {}\mRightarrow{} ((f[y] - f[x]) \mleq{} (r1/r(n))))))) and
(((M * (b - a)) - k) \mleq{} m))
supposing a < b
7. a : \mBbbZ{}
8. b : \mBbbZ{}
9. a < b
10. k : \mBbbN{}\msupplus{}
11. ((M * (b - a)) - k) \mleq{} n@0
12. \mforall{}x,y:\mBbbR{}.
(((r(a))/k \mleq{} x)
{}\mRightarrow{} (x < y)
{}\mRightarrow{} (y \mleq{} (r(b))/k)
{}\mRightarrow{} ((f[x] \mleq{} f[y]) \mwedge{} (((y - x) \mleq{} (r1/r(M))) {}\mRightarrow{} ((f[y] - f[x]) \mleq{} (r1/r(n))))))
13. f[(r(a))/k] \mleq{} z
14. z \mleq{} f[(r(b))/k]
15. \mneg{}((M * (b - a)) \mleq{} k)
16. m : \mBbbZ{}
17. m = (a + b)
18. j : \mBbbZ{}
19. j = (2 * k)
20. f[(r(m))/j] < z
21. bb : \mBbbZ{}
22. bb = (2 * b)
23. x : \mBbbR{}
24. y : \mBbbR{}
25. (r(m))/j \mleq{} x
26. x < y
27. y \mleq{} (r(bb))/j
\mvdash{} (r(a))/k \mleq{} x
By
Latex:
(RWO "-3<" 0
THEN Auto
THEN RWO "int-rdiv-req" 0
THEN Auto
THEN (Assert (2 * a) \mleq{} m BY
Auto)
THEN Mul \mkleeneopen{}k\mkleeneclose{} (-1)\mcdot{}
THEN Auto)
Home
Index