Step
*
of Lemma
near-root-rational
No Annotations
∀k:{2...}. ∀p:{p:ℤ| (0 ≤ p) ∨ (↑isOdd(k))} . ∀q,n:ℕ+.
(∃r:ℤ × ℕ+ [let a,b = r
in (0 ≤ p
⇐⇒ 0 ≤ a) ∧ (|(r(a))/b^k - (r(p)/r(q))| < (r1/r(n)))])
BY
{ (Auto THEN D 2 THEN (Assert (0 ≤ p) ∨ (↑isOdd(k)) BY (Unhide THEN Auto)) THEN Thin 3) }
1
1. k : {2...}
2. p : ℤ
3. q : ℕ+
4. n : ℕ+
5. (0 ≤ p) ∨ (↑isOdd(k))
⊢ ∃r:ℤ × ℕ+ [let a,b = r
in (0 ≤ p
⇐⇒ 0 ≤ a) ∧ (|(r(a))/b^k - (r(p)/r(q))| < (r1/r(n)))]
Latex:
Latex:
No Annotations
\mforall{}k:\{2...\}. \mforall{}p:\{p:\mBbbZ{}| (0 \mleq{} p) \mvee{} (\muparrow{}isOdd(k))\} . \mforall{}q,n:\mBbbN{}\msupplus{}.
(\mexists{}r:\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{} [let a,b = r
in (0 \mleq{} p \mLeftarrow{}{}\mRightarrow{} 0 \mleq{} a) \mwedge{} (|(r(a))/b\^{}k - (r(p)/r(q))| < (r1/r(n)))])
By
Latex:
(Auto THEN D 2 THEN (Assert (0 \mleq{} p) \mvee{} (\muparrow{}isOdd(k)) BY (Unhide THEN Auto)) THEN Thin 3)
Home
Index