Step
*
1
1
1
of Lemma
not-in-compact-separated
1. X : Type
2. d : metric(X)
3. A : Type
4. mcomplete(X with d) ∧ metric-subspace(X;d;A)
5. A ⊆r X
6. respects-equality(X;A)
7. ∀a:A. ∀x:X. (x ≡ a
⇒ (x ∈ A))
8. c : mcompact(A;d)
9. x : X
10. ¬(x ∈ A)
11. ∃n:ℕ+. ∀a:A. ((r1/r(n)) ≤ mdist(d;x;a)) ∈ ℙ
12. ¬(r0 < dist(x;A))
13. dist(x;A) ≤ r0
⊢ ¬¬(∃n:ℕ+. ∀a:A. ((r1/r(n)) ≤ mdist(d;x;a)))
BY
{ ((Assert r0 ≤ dist(x;A) BY EAuto 1) THEN (Assert dist(x;A) = r0 BY Auto)) }
1
1. X : Type
2. d : metric(X)
3. A : Type
4. mcomplete(X with d) ∧ metric-subspace(X;d;A)
5. A ⊆r X
6. respects-equality(X;A)
7. ∀a:A. ∀x:X. (x ≡ a
⇒ (x ∈ A))
8. c : mcompact(A;d)
9. x : X
10. ¬(x ∈ A)
11. ∃n:ℕ+. ∀a:A. ((r1/r(n)) ≤ mdist(d;x;a)) ∈ ℙ
12. ¬(r0 < dist(x;A))
13. dist(x;A) ≤ r0
14. r0 ≤ dist(x;A)
15. dist(x;A) = r0
⊢ ¬¬(∃n:ℕ+. ∀a:A. ((r1/r(n)) ≤ mdist(d;x;a)))
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. A : Type
4. mcomplete(X with d) \mwedge{} metric-subspace(X;d;A)
5. A \msubseteq{}r X
6. respects-equality(X;A)
7. \mforall{}a:A. \mforall{}x:X. (x \mequiv{} a {}\mRightarrow{} (x \mmember{} A))
8. c : mcompact(A;d)
9. x : X
10. \mneg{}(x \mmember{} A)
11. \mexists{}n:\mBbbN{}\msupplus{}. \mforall{}a:A. ((r1/r(n)) \mleq{} mdist(d;x;a)) \mmember{} \mBbbP{}
12. \mneg{}(r0 < dist(x;A))
13. dist(x;A) \mleq{} r0
\mvdash{} \mneg{}\mneg{}(\mexists{}n:\mBbbN{}\msupplus{}. \mforall{}a:A. ((r1/r(n)) \mleq{} mdist(d;x;a)))
By
Latex:
((Assert r0 \mleq{} dist(x;A) BY EAuto 1) THEN (Assert dist(x;A) = r0 BY Auto))
Home
Index