Step
*
of Lemma
partition-choice-indep-funtype
∀[I:Interval]
∀[p:partition(I)]. (partition-choice(full-partition(I;p)) ⊆r (ℕ||p|| + 1 ⟶ {x:ℝ| x ∈ I} )) supposing icompact(I)
BY
{ ((Auto THEN (Assert ||full-partition(I;p)|| = (||p|| + 2) ∈ ℤ BY (Unfold `full-partition` 0 THEN Auto')))
THEN (D 0 THENA Auto)
) }
1
.....subterm..... T:t
1:n
1. I : Interval
2. icompact(I)
3. p : partition(I)
4. ||full-partition(I;p)|| = (||p|| + 2) ∈ ℤ
5. x : partition-choice(full-partition(I;p))
⊢ x ∈ ℕ||p|| + 1 ⟶ {x:ℝ| x ∈ I}
Latex:
Latex:
\mforall{}[I:Interval]
\mforall{}[p:partition(I)]. (partition-choice(full-partition(I;p)) \msubseteq{}r (\mBbbN{}||p|| + 1 {}\mrightarrow{} \{x:\mBbbR{}| x \mmember{} I\} ))
supposing icompact(I)
By
Latex:
((Auto
THEN (Assert ||full-partition(I;p)|| = (||p|| + 2) BY
(Unfold `full-partition` 0 THEN Auto'))
)
THEN (D 0 THENA Auto)
)
Home
Index