Nuprl Lemma : partition-point-member

I:Interval. (icompact(I)  (∀p:partition(I). (∀x∈p.x ∈ I)))


Proof




Definitions occuring in Statement :  partition: partition(I) icompact: icompact(I) i-member: r ∈ I interval: Interval l_all: (∀x∈L.P[x]) all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  partition: partition(I) all: x:A. B[x] implies:  Q member: t ∈ T sq_stable: SqStable(P) squash: T l_all: (∀x∈L.P[x]) uall: [x:A]. B[x] int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: iff: ⇐⇒ Q rev_implies:  Q partitions: partitions(I;p) rbetween: x≤y≤z icompact: icompact(I) frs-non-dec: frs-non-dec(L) rev_uimplies: rev_uimplies(P;Q) less_than': less_than'(a;b) rge: x ≥ y guard: {T} last: last(L)

Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}p:partition(I).  (\mforall{}x\mmember{}p.x  \mmember{}  I)))



Date html generated: 2020_05_20-AM-11_36_37
Last ObjectModification: 2020_01_06-PM-00_18_30

Theory : reals


Home Index