Nuprl Lemma : partition-point-member
∀I:Interval. (icompact(I) 
⇒ (∀p:partition(I). (∀x∈p.x ∈ I)))
Proof
Definitions occuring in Statement : 
partition: partition(I)
, 
icompact: icompact(I)
, 
i-member: r ∈ I
, 
interval: Interval
, 
l_all: (∀x∈L.P[x])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
partition: partition(I)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
l_all: (∀x∈L.P[x])
, 
uall: ∀[x:A]. B[x]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
partitions: partitions(I;p)
, 
rbetween: x≤y≤z
, 
icompact: icompact(I)
, 
frs-non-dec: frs-non-dec(L)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
less_than': less_than'(a;b)
, 
rge: x ≥ y
, 
guard: {T}
, 
last: last(L)
Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}p:partition(I).  (\mforall{}x\mmember{}p.x  \mmember{}  I)))
Date html generated:
2020_05_20-AM-11_36_37
Last ObjectModification:
2020_01_06-PM-00_18_30
Theory : reals
Home
Index