Nuprl Lemma : poly-approx-aux-property

[k:ℕ]. ∀[a:ℕ ⟶ ℝ]. ∀[x:ℝ]. ∀[xM:ℤ]. ∀[M:ℕ+]. ∀[n:ℕ].
  ((|x| ≤ (r1/r(4)))  1-approx(x;M;xM)  1-approx(Σ{(a (n i)) x^i 0≤i≤k};M;poly-approx-aux(a;x;xM;M;n;k)))


Proof




Definitions occuring in Statement :  poly-approx-aux: poly-approx-aux(a;x;xM;M;n;k) ireal-approx: j-approx(x;M;z) rsum: Σ{x[k] n≤k≤m} rdiv: (x/y) rleq: x ≤ y rabs: |x| rnexp: x^k1 rmul: b int-to-real: r(n) real: nat_plus: + nat: uall: [x:A]. B[x] implies:  Q apply: a function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: ireal-approx: j-approx(x;M;z) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B true: True squash: T less_than: a < b rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y less_than': less_than'(a;b) btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) poly-approx-aux: poly-approx-aux(a;x;xM;M;n;k) so_apply: x[s] decidable: Dec(P) nat_plus: + lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2x.t[x] real: subtype_rel: A ⊆B pointwise-req: x[k] y[k] for k ∈ [n,m] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) has-value: (a)↓ bool: 𝔹 unit: Unit it: bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  int_nzero: -o rge: x ≥ y

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[xM:\mBbbZ{}].  \mforall{}[M:\mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].
    ((|x|  \mleq{}  (r1/r(4)))
    {}\mRightarrow{}  1-approx(x;M;xM)
    {}\mRightarrow{}  k  +  1-approx(\mSigma{}\{(a  (n  +  i))  *  x\^{}i  |  0\mleq{}i\mleq{}k\};M;poly-approx-aux(a;x;xM;M;n;k)))



Date html generated: 2020_05_20-AM-11_16_52
Last ObjectModification: 2020_01_03-AM-00_57_58

Theory : reals


Home Index