Nuprl Lemma : poly-approx-aux-property
∀[k:ℕ]. ∀[a:ℕ ⟶ ℝ]. ∀[x:ℝ]. ∀[xM:ℤ]. ∀[M:ℕ+]. ∀[n:ℕ].
  ((|x| ≤ (r1/r(4))) 
⇒ 1-approx(x;M;xM) 
⇒ k + 1-approx(Σ{(a (n + i)) * x^i | 0≤i≤k};M;poly-approx-aux(a;x;xM;M;n;k)))
Proof
Definitions occuring in Statement : 
poly-approx-aux: poly-approx-aux(a;x;xM;M;n;k)
, 
ireal-approx: j-approx(x;M;z)
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rnexp: x^k1
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
ireal-approx: j-approx(x;M;z)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
less_than': less_than'(a;b)
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
poly-approx-aux: poly-approx-aux(a;x;xM;M;n;k)
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
nat_plus: ℕ+
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
has-value: (a)↓
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
rge: x ≥ y
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[xM:\mBbbZ{}].  \mforall{}[M:\mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].
    ((|x|  \mleq{}  (r1/r(4)))
    {}\mRightarrow{}  1-approx(x;M;xM)
    {}\mRightarrow{}  k  +  1-approx(\mSigma{}\{(a  (n  +  i))  *  x\^{}i  |  0\mleq{}i\mleq{}k\};M;poly-approx-aux(a;x;xM;M;n;k)))
Date html generated:
2020_05_20-AM-11_16_52
Last ObjectModification:
2020_01_03-AM-00_57_58
Theory : reals
Home
Index