Step
*
1
1
1
of Lemma
power-series-converges
1. a : ℕ ⟶ ℝ
2. b : ℝ
3. r : {r:ℝ| r0 < r}
4. N : ℕ
5. ∀n:{N...}. (|a[n + 1]| ≤ (|a[n]|/r))
6. m : {m:ℕ+| icompact([(b - r) + (r1/r(m)), (b + r) - (r1/r(m))])}
⊢ ∃r':ℝ. ((r0 ≤ r') ∧ (r' < r) ∧ (∀x:{x:ℝ| x ∈ [(b - r) + (r1/r(m)), (b + r) - (r1/r(m))]} . (|x - b| ≤ r')))
BY
{ (With ⌜r - (r1/r(m))⌝ (D 0)⋅ THEN Auto) }
1
1. a : ℕ ⟶ ℝ
2. b : ℝ
3. r : {r:ℝ| r0 < r}
4. N : ℕ
5. ∀n:{N...}. (|a[n + 1]| ≤ (|a[n]|/r))
6. m : {m:ℕ+| icompact([(b - r) + (r1/r(m)), (b + r) - (r1/r(m))])}
⊢ r0 ≤ (r - (r1/r(m)))
2
1. a : ℕ ⟶ ℝ
2. b : ℝ
3. r : {r:ℝ| r0 < r}
4. N : ℕ
5. ∀n:{N...}. (|a[n + 1]| ≤ (|a[n]|/r))
6. m : {m:ℕ+| icompact([(b - r) + (r1/r(m)), (b + r) - (r1/r(m))])}
7. r0 ≤ (r - (r1/r(m)))
8. (r - (r1/r(m))) < r
9. x : {x:ℝ| x ∈ [(b - r) + (r1/r(m)), (b + r) - (r1/r(m))]}
⊢ |x - b| ≤ (r - (r1/r(m)))
Latex:
Latex:
1. a : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. b : \mBbbR{}
3. r : \{r:\mBbbR{}| r0 < r\}
4. N : \mBbbN{}
5. \mforall{}n:\{N...\}. (|a[n + 1]| \mleq{} (|a[n]|/r))
6. m : \{m:\mBbbN{}\msupplus{}| icompact([(b - r) + (r1/r(m)), (b + r) - (r1/r(m))])\}
\mvdash{} \mexists{}r':\mBbbR{}
((r0 \mleq{} r')
\mwedge{} (r' < r)
\mwedge{} (\mforall{}x:\{x:\mBbbR{}| x \mmember{} [(b - r) + (r1/r(m)), (b + r) - (r1/r(m))]\} . (|x - b| \mleq{} r')))
By
Latex:
(With \mkleeneopen{}r - (r1/r(m))\mkleeneclose{} (D 0)\mcdot{} THEN Auto)
Home
Index