Nuprl Lemma : pseudo-positive-is-positive-proof2

x:ℝr0 < supposing pseudo-positive(x)


Proof




Definitions occuring in Statement :  pseudo-positive: pseudo-positive(x) rless: x < y int-to-real: r(n) real: uimplies: supposing a all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] prop: int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q sq_type: SQType(T) guard: {T} false: False nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q int_upper: {i...} rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q nat_plus: + less_than: a < b squash: T isl: isl(x) le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat-star: * int_seg: {i..j-} lelt: i ≤ j < k so_apply: x[s] top: Top cauchy: cauchy(n.x[n]) sq_exists: x:A [B[x]] assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 absval: |i| rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 cand: c∧ B nat-star-retract: nat-star-retract(s) rless: x < y rge: x ≥ y sq_stable: SqStable(P) real: converges: x[n]↓ as n→∞ pseudo-positive: pseudo-positive(x) stable: Stable{P} label: ...$L... t l_all: (∀x∈L.P[x]) isr: isr(x)

Latex:
\mforall{}x:\mBbbR{}.  r0  <  x  supposing  pseudo-positive(x)



Date html generated: 2020_05_20-AM-11_19_27
Last ObjectModification: 2020_01_03-PM-04_19_12

Theory : reals


Home Index