Nuprl Lemma : rabs-is-zero
∀x:ℝ. (|x| = r0 ⇐⇒ x = r0)
Proof
Definitions occuring in Statement : 
rabs: |x|, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
guard: {T}, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B
Latex:
\mforall{}x:\mBbbR{}.  (|x|  =  r0  \mLeftarrow{}{}\mRightarrow{}  x  =  r0)
Date html generated:
2020_05_20-AM-11_02_12
Last ObjectModification:
2019_12_14-PM-00_54_42
Theory : reals
Home
Index