Nuprl Lemma : rabs_functionality_wrt_bdd-diff

x,y:ℕ+ ⟶ ℤ.  (bdd-diff(x;y)  bdd-diff(|x|;|y|))


Proof




Definitions occuring in Statement :  rabs: |x| bdd-diff: bdd-diff(f;g) nat_plus: + all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q prop: rminus: -(x) rmax: rmax(x;y) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q

Latex:
\mforall{}x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (bdd-diff(x;y)  {}\mRightarrow{}  bdd-diff(|x|;|y|))



Date html generated: 2020_05_20-AM-10_56_00
Last ObjectModification: 2020_03_20-AM-11_29_06

Theory : reals


Home Index