Nuprl Lemma : rabs_functionality_wrt_bdd-diff
∀x,y:ℕ+ ⟶ ℤ.  (bdd-diff(x;y) 
⇒ bdd-diff(|x|;|y|))
Proof
Definitions occuring in Statement : 
rabs: |x|
, 
bdd-diff: bdd-diff(f;g)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rminus: -(x)
, 
rmax: rmax(x;y)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Latex:
\mforall{}x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (bdd-diff(x;y)  {}\mRightarrow{}  bdd-diff(|x|;|y|))
Date html generated:
2020_05_20-AM-10_56_00
Last ObjectModification:
2020_03_20-AM-11_29_06
Theory : reals
Home
Index