Step
*
of Lemma
radd_assoc
∀[a,b,c:ℝ]. (((a + b) + c) = (a + b + c))
BY
{ (Auto
THEN (InstLemma `radd-list-cons` [⌜[b; c]⌝;⌜a⌝]⋅ THENA Auto)
THEN (RWO "radd-as-radd-list<" (-1) THENA Auto)
THEN (RWO "-1<" 0 THENA Auto)
THEN (Subst ⌜((a + b) + c) = (c + a + b) ∈ ℝ⌝ 0⋅ THENA Auto)
THEN (RW (AddrC [1;2] (LemmaC `radd-as-radd-list`)) 0 THENA Auto)
THEN RWO "radd-list-cons<" 0
THEN Auto) }
1
1. a : ℝ
2. b : ℝ
3. c : ℝ
4. radd-list([a; b; c]) = (a + b + c)
⊢ radd-list([c; a; b]) = radd-list([a; b; c])
Latex:
Latex:
\mforall{}[a,b,c:\mBbbR{}]. (((a + b) + c) = (a + b + c))
By
Latex:
(Auto
THEN (InstLemma `radd-list-cons` [\mkleeneopen{}[b; c]\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWO "radd-as-radd-list<" (-1) THENA Auto)
THEN (RWO "-1<" 0 THENA Auto)
THEN (Subst \mkleeneopen{}((a + b) + c) = (c + a + b)\mkleeneclose{} 0\mcdot{} THENA Auto)
THEN (RW (AddrC [1;2] (LemmaC `radd-as-radd-list`)) 0 THENA Auto)
THEN RWO "radd-list-cons<" 0
THEN Auto)
Home
Index