Nuprl Lemma : range-inf-property

I:{I:Interval| icompact(I)} . ∀f:I ⟶ℝ. ∀mc:f[x] continuous for x ∈ I.  inf(f[x](x∈I)) inf{f[x]|x ∈ I}


Proof




Definitions occuring in Statement :  range-inf: inf{f[x]|x ∈ I} continuous: f[x] continuous for x ∈ I rrange: f[x](x∈I) icompact: icompact(I) rfun: I ⟶ℝ interval: Interval inf: inf(A) b so_apply: x[s] all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  so_apply: x[s] all: x:A. B[x] range-inf: inf{f[x]|x ∈ I} member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: label: ...$L... t rfun: I ⟶ℝ uimplies: supposing a sq_stable: SqStable(P) squash: T exists: x:A. B[x] r-ap: f(x) pi1: fst(t)

Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  I.
    inf(f[x](x\mmember{}I))  =  inf\{f[x]|x  \mmember{}  I\}



Date html generated: 2020_05_20-PM-00_17_32
Last ObjectModification: 2020_01_03-PM-00_14_56

Theory : reals


Home Index