Step
*
of Lemma
range_sup_functionality
No Annotations
∀I:{I:Interval| icompact(I)} . ∀f:{x:ℝ| x ∈ I} ⟶ ℝ.
∀g:{x:ℝ| x ∈ I} ⟶ ℝ. sup{f[x] | x ∈ I} = sup{g[x] | x ∈ I} supposing ∀x:{x:ℝ| x ∈ I} . (f[x] = g[x])
supposing ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
BY
{ (InstLemma `range_sup_functionality2` []
THEN ParallelLast'
THEN (D -1 With ⌜I⌝ THENA Auto)
THEN ParallelLast'
THEN Intro
THEN (D -2 THENA Auto)
THEN ParallelLast
THEN Intro
THEN BackThruSomeHyp) }
1
1. I : {I:Interval| icompact(I)}
2. f : {x:ℝ| x ∈ I} ⟶ ℝ
3. ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
4. ∀g:{x:ℝ| x ∈ I} ⟶ ℝ
(sup{f[x] | x ∈ I} = sup{g[x] | x ∈ I}) supposing
(((∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ I} . (f[x] = g[y])) ∧ (∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ I} . (f[y] = g[x]))) and\000C
(∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (g[x] = g[y]))))
5. g : {x:ℝ| x ∈ I} ⟶ ℝ
6. (sup{f[x] | x ∈ I} = sup{g[x] | x ∈ I}) supposing
(((∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ I} . (f[x] = g[y])) ∧ (∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ I} . (f[y] = g[x]))) and
(∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (g[x] = g[y]))))
7. ∀x:{x:ℝ| x ∈ I} . (f[x] = g[x])
⊢ ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (g[x] = g[y]))
2
1. I : {I:Interval| icompact(I)}
2. f : {x:ℝ| x ∈ I} ⟶ ℝ
3. ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
4. ∀g:{x:ℝ| x ∈ I} ⟶ ℝ
(sup{f[x] | x ∈ I} = sup{g[x] | x ∈ I}) supposing
(((∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ I} . (f[x] = g[y])) ∧ (∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ I} . (f[y] = g[x]))) and\000C
(∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (g[x] = g[y]))))
5. g : {x:ℝ| x ∈ I} ⟶ ℝ
6. (sup{f[x] | x ∈ I} = sup{g[x] | x ∈ I}) supposing
(((∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ I} . (f[x] = g[y])) ∧ (∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ I} . (f[y] = g[x]))) and
(∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (g[x] = g[y]))))
7. ∀x:{x:ℝ| x ∈ I} . (f[x] = g[x])
⊢ (∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ I} . (f[x] = g[y])) ∧ (∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ I} . (f[y] = g[x]))
Latex:
Latex:
No Annotations
\mforall{}I:\{I:Interval| icompact(I)\} . \mforall{}f:\{x:\mBbbR{}| x \mmember{} I\} {}\mrightarrow{} \mBbbR{}.
\mforall{}g:\{x:\mBbbR{}| x \mmember{} I\} {}\mrightarrow{} \mBbbR{}
sup\{f[x] | x \mmember{} I\} = sup\{g[x] | x \mmember{} I\} supposing \mforall{}x:\{x:\mBbbR{}| x \mmember{} I\} . (f[x] = g[x])
supposing \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x = y) {}\mRightarrow{} (f[x] = f[y]))
By
Latex:
(InstLemma `range\_sup\_functionality2` []
THEN ParallelLast'
THEN (D -1 With \mkleeneopen{}I\mkleeneclose{} THENA Auto)
THEN ParallelLast'
THEN Intro
THEN (D -2 THENA Auto)
THEN ParallelLast
THEN Intro
THEN BackThruSomeHyp)
Home
Index