Step
*
of Lemma
range_sup_wf
No Annotations
∀[I:{I:Interval| icompact(I)} ]. ∀[f:{x:ℝ| x ∈ I} ⟶ ℝ].
sup{f[x] | x ∈ I} ∈ ℝ supposing ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
BY
{ (Intros
THEN Unhide
THEN (Assert ifun(λx.(f x);I) BY
((InstLemma `icompact-is-rccint` [⌜I⌝]⋅ THENA Auto)
THEN (Assert [left-endpoint(I), right-endpoint(I)] ⊆ I BY
(D 0 THEN Auto))
THEN D 0
THEN Reduce 0
THEN Auto))
THEN Unfold `range_sup` 0
THEN GenConclAtAddr [2;1;1]
THEN RepUR ``so_apply r-ap`` 0
THEN Auto) }
Latex:
Latex:
No Annotations
\mforall{}[I:\{I:Interval| icompact(I)\} ]. \mforall{}[f:\{x:\mBbbR{}| x \mmember{} I\} {}\mrightarrow{} \mBbbR{}].
sup\{f[x] | x \mmember{} I\} \mmember{} \mBbbR{} supposing \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x = y) {}\mRightarrow{} (f[x] = f[y]))
By
Latex:
(Intros
THEN Unhide
THEN (Assert ifun(\mlambda{}x.(f x);I) BY
((InstLemma `icompact-is-rccint` [\mkleeneopen{}I\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Assert [left-endpoint(I), right-endpoint(I)] \msubseteq{} I BY
(D 0 THEN Auto))
THEN D 0
THEN Reduce 0
THEN Auto))
THEN Unfold `range\_sup` 0
THEN GenConclAtAddr [2;1;1]
THEN RepUR ``so\_apply r-ap`` 0
THEN Auto)
Home
Index