Nuprl Lemma : ratio-test

x:ℕ ⟶ ℝ. ∀N:ℕ.
  ((∀c:{c:ℝ(r0 ≤ c) ∧ (c < r1)} ((∀n:{N...}. (|x[n 1]| ≤ (c |x[n]|)))  Σn.x[n]↓))
  ∧ (∀c:{c:ℝr1 < c} ((∀n:{N...}. ((c |x[n]|) < |x[n 1]|))  Σn.x[n]↑)))


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ series-converges: Σn.x[n]↓ rleq: x ≤ y rless: x < y rabs: |x| rmul: b int-to-real: r(n) real: int_upper: {i...} nat: so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B implies:  Q uall: [x:A]. B[x] member: t ∈ T nat: so_apply: x[s] int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 sq_type: SQType(T) guard: {T} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  sq_stable: SqStable(P) squash: T rge: x ≥ y so_lambda: λ2x.t[x] true: True rev_implies:  Q iff: ⇐⇒ Q series-converges: Σn.x[n]↓ rneq: x ≠ y less_than': less_than'(a;b) rgt: x > y rless: x < y sq_exists: x:A [B[x]] nat_plus: + subtype_rel: A ⊆B real: subtract: m

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}N:\mBbbN{}.
    ((\mforall{}c:\{c:\mBbbR{}|  (r0  \mleq{}  c)  \mwedge{}  (c  <  r1)\}  .  ((\mforall{}n:\{N...\}.  (|x[n  +  1]|  \mleq{}  (c  *  |x[n]|)))  {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{}))
    \mwedge{}  (\mforall{}c:\{c:\mBbbR{}|  r1  <  c\}  .  ((\mforall{}n:\{N...\}.  ((c  *  |x[n]|)  <  |x[n  +  1]|))  {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})))



Date html generated: 2020_05_20-AM-11_22_18
Last ObjectModification: 2020_01_06-PM-00_26_02

Theory : reals


Home Index