Nuprl Lemma : rational-inner-approx-int

x:ℝ. ∀n:ℕ+.  ∃z:ℤ((|(r(z)/r(4 n))| ≤ |x|) ∧ (|x (r(z)/r(4 n))| ≤ (r(2)/r(n))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q multiply: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False prop: real: rational-inner-approx: rational-inner-approx(x;n) has-value: (a)↓ bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b int_nzero: -o nequal: a ≠ b ∈  subtype_rel: A ⊆B

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    \mexists{}z:\mBbbZ{}.  ((|(r(z)/r(4  *  n))|  \mleq{}  |x|)  \mwedge{}  (|x  -  (r(z)/r(4  *  n))|  \mleq{}  (r(2)/r(n))))



Date html generated: 2020_05_20-AM-11_04_31
Last ObjectModification: 2019_12_14-PM-00_54_29

Theory : reals


Home Index