Nuprl Lemma : rational-inner-approx-int
∀x:ℝ. ∀n:ℕ+.  ∃z:ℤ. ((|(r(z)/r(4 * n))| ≤ |x|) ∧ (|x - (r(z)/r(4 * n))| ≤ (r(2)/r(n))))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
prop: ℙ
, 
real: ℝ
, 
rational-inner-approx: rational-inner-approx(x;n)
, 
has-value: (a)↓
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
subtype_rel: A ⊆r B
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    \mexists{}z:\mBbbZ{}.  ((|(r(z)/r(4  *  n))|  \mleq{}  |x|)  \mwedge{}  (|x  -  (r(z)/r(4  *  n))|  \mleq{}  (r(2)/r(n))))
Date html generated:
2020_05_20-AM-11_04_31
Last ObjectModification:
2019_12_14-PM-00_54_29
Theory : reals
Home
Index