Step
*
1
1
of Lemma
rdiv-factorial-lemma2
1. x : ℝ@i
2. b : ℕ@i
3. (x * x) ≤ r(b * b)@i
4. n : ℕ@i
5. (b ÷ 2) ≤ n@i
6. b = (((b ÷ 2) * 2) + (b rem 2)) ∈ ℤ
7. 0 ≤ (b rem 2)
8. b rem 2 < 2
9. (r((2 * (n + 1))!)/r((2 * n)!)) = r(((n * 2) + 2) * ((n * 2) + 1))
⊢ (b * b) ≤ (((n * 2) + 2) * ((n * 2) + 1))
BY
{ ((Assert (b * b) ≤ (b * ((n * 2) + 2)) BY
(BLemma `mul_preserves_le` THEN Auto))
THEN (Assert (((n * 2) + 2) * b) ≤ (((n * 2) + 2) * ((n * 2) + 1)) BY
(BLemma `mul_preserves_le` THEN Auto))
THEN Auto')⋅ }
Latex:
Latex:
1. x : \mBbbR{}@i
2. b : \mBbbN{}@i
3. (x * x) \mleq{} r(b * b)@i
4. n : \mBbbN{}@i
5. (b \mdiv{} 2) \mleq{} n@i
6. b = (((b \mdiv{} 2) * 2) + (b rem 2))
7. 0 \mleq{} (b rem 2)
8. b rem 2 < 2
9. (r((2 * (n + 1))!)/r((2 * n)!)) = r(((n * 2) + 2) * ((n * 2) + 1))
\mvdash{} (b * b) \mleq{} (((n * 2) + 2) * ((n * 2) + 1))
By
Latex:
((Assert (b * b) \mleq{} (b * ((n * 2) + 2)) BY
(BLemma `mul\_preserves\_le` THEN Auto))
THEN (Assert (((n * 2) + 2) * b) \mleq{} (((n * 2) + 2) * ((n * 2) + 1)) BY
(BLemma `mul\_preserves\_le` THEN Auto))
THEN Auto')\mcdot{}
Home
Index