Nuprl Lemma : real-fun-uniformly-positive

a:ℝ. ∀b:{b:ℝa ≤ b} . ∀f:[a, b] ⟶ℝ.
  (real-fun(f;a;b)  (∀x:{x:ℝx ∈ [a, b]} (r0 < (f x)))  (∃c:{c:ℝr0 < c} . ∀x:{x:ℝx ∈ [a, b]} (c < (f x))))


Proof




Definitions occuring in Statement :  real-fun: real-fun(f;a;b) rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rleq: x ≤ y rless: x < y int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] prop: rfun: I ⟶ℝ uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q real-fun: real-fun(f;a;b) so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) exists: x:A. B[x] nat_plus: + nat: ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:A [B[x]] cand: c∧ B sq_stable: SqStable(P) squash: T le: A ≤ B less_than': less_than'(a;b) rdiv: (x/y) req_int_terms: t1 ≡ t2

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.
    (real-fun(f;a;b)
    {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  (r0  <  (f  x)))
    {}\mRightarrow{}  (\mexists{}c:\{c:\mBbbR{}|  r0  <  c\}  .  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  (c  <  (f  x))))



Date html generated: 2020_05_20-PM-00_22_53
Last ObjectModification: 2020_01_08-AM-10_51_16

Theory : reals


Home Index