Nuprl Lemma : real-fun-uniformly-positive
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f:[a, b] ⟶ℝ.
  (real-fun(f;a;b) 
⇒ (∀x:{x:ℝ| x ∈ [a, b]} . (r0 < (f x))) 
⇒ (∃c:{c:ℝ| r0 < c} . ∀x:{x:ℝ| x ∈ [a, b]} . (c < (f x))))
Proof
Definitions occuring in Statement : 
real-fun: real-fun(f;a;b)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rfun: I ⟶ℝ
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
real-fun: real-fun(f;a;b)
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.
    (real-fun(f;a;b)
    {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  (r0  <  (f  x)))
    {}\mRightarrow{}  (\mexists{}c:\{c:\mBbbR{}|  r0  <  c\}  .  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .  (c  <  (f  x))))
Date html generated:
2020_05_20-PM-00_22_53
Last ObjectModification:
2020_01_08-AM-10_51_16
Theory : reals
Home
Index