Step
*
1
1
of Lemma
real-ratio-bound_wf
1. M : ℕ+
2. x : ℝ
3. y : ℝ
4. a : {r:ℝ| r0 < r}
5. b : {r:ℝ| r0 < r}
6. r0 < (r1/r(M))
7. v : ℤ
8. (v = 1 ∈ ℤ)
⇒ ((r1/r(M)) < (y - x))
9. (v = 2 ∈ ℤ)
⇒ ((r1/r(M)) < (x - y))
10. v = 0 ∈ ℤ
11. |x - y| < (r(2)/r(M))
12. x < y
⊢ ((r(M)/r(2)) * rmin(a;b)) ≤ (a/y - x)
BY
{ ((Assert |x - y| = |y - x| BY Auto) THEN (RWO "-1" (-3) THENA Auto)) }
1
1. M : ℕ+
2. x : ℝ
3. y : ℝ
4. a : {r:ℝ| r0 < r}
5. b : {r:ℝ| r0 < r}
6. r0 < (r1/r(M))
7. v : ℤ
8. (v = 1 ∈ ℤ)
⇒ ((r1/r(M)) < (y - x))
9. (v = 2 ∈ ℤ)
⇒ ((r1/r(M)) < (x - y))
10. v = 0 ∈ ℤ
11. |y - x| < (r(2)/r(M))
12. x < y
13. |x - y| = |y - x|
⊢ ((r(M)/r(2)) * rmin(a;b)) ≤ (a/y - x)
Latex:
Latex:
1. M : \mBbbN{}\msupplus{}
2. x : \mBbbR{}
3. y : \mBbbR{}
4. a : \{r:\mBbbR{}| r0 < r\}
5. b : \{r:\mBbbR{}| r0 < r\}
6. r0 < (r1/r(M))
7. v : \mBbbZ{}
8. (v = 1) {}\mRightarrow{} ((r1/r(M)) < (y - x))
9. (v = 2) {}\mRightarrow{} ((r1/r(M)) < (x - y))
10. v = 0
11. |x - y| < (r(2)/r(M))
12. x < y
\mvdash{} ((r(M)/r(2)) * rmin(a;b)) \mleq{} (a/y - x)
By
Latex:
((Assert |x - y| = |y - x| BY Auto) THEN (RWO "-1" (-3) THENA Auto))
Home
Index