Step
*
1
of Lemma
real-vec-dist-lower-bound
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. ∀v:ℝ^n. (||v|| = d(v;λi.r0))
⊢ |d(λi.r0;y) - d(λi.r0;x)| ≤ d(y;x)
BY
{ ((BLemma `rabs-difference-bound-rleq` THENA Auto)
THEN (Assert d(y;x) = d(x;y) BY
Auto)
THEN (InstLemma `real-vec-triangle-inequality` [⌜n⌝;⌜λi.r0⌝;⌜y⌝;⌜x⌝]⋅ THENA Auto)
THEN InstLemma `real-vec-triangle-inequality` [⌜n⌝;⌜λi.r0⌝;⌜x⌝;⌜y⌝]⋅
THEN Auto) }
Latex:
Latex:
1. n : \mBbbN{}
2. x : \mBbbR{}\^{}n
3. y : \mBbbR{}\^{}n
4. \mforall{}v:\mBbbR{}\^{}n. (||v|| = d(v;\mlambda{}i.r0))
\mvdash{} |d(\mlambda{}i.r0;y) - d(\mlambda{}i.r0;x)| \mleq{} d(y;x)
By
Latex:
((BLemma `rabs-difference-bound-rleq` THENA Auto)
THEN (Assert d(y;x) = d(x;y) BY
Auto)
THEN (InstLemma `real-vec-triangle-inequality` [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}\mlambda{}i.r0\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto)
THEN InstLemma `real-vec-triangle-inequality` [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}\mlambda{}i.r0\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index