Step
*
of Lemma
real-vec-sep-0-iff
No Annotations
∀n:ℕ. ∀x:ℝ^n. (x ≠ λi.r0
⇐⇒ r0 < x⋅x)
BY
{ (RepUR ``real-vec-sep real-vec-dist`` 0
THEN Auto
THEN (Assert req-vec(n;x - λi.r0;x) BY
(D 0 THEN RepUR ``real-vec-sub`` 0 THEN Auto))) }
1
1. n : ℕ
2. x : ℝ^n
3. r0 < ||x - λi.r0||
4. req-vec(n;x - λi.r0;x)
⊢ r0 < x⋅x
2
1. n : ℕ
2. x : ℝ^n
3. r0 < x⋅x
4. req-vec(n;x - λi.r0;x)
⊢ r0 < ||x - λi.r0||
Latex:
Latex:
No Annotations
\mforall{}n:\mBbbN{}. \mforall{}x:\mBbbR{}\^{}n. (x \mneq{} \mlambda{}i.r0 \mLeftarrow{}{}\mRightarrow{} r0 < x\mcdot{}x)
By
Latex:
(RepUR ``real-vec-sep real-vec-dist`` 0
THEN Auto
THEN (Assert req-vec(n;x - \mlambda{}i.r0;x) BY
(D 0 THEN RepUR ``real-vec-sub`` 0 THEN Auto)))
Home
Index