Step
*
1
1
of Lemma
real-vec-sep-add
1. n : ℕ
2. x : ℝ^n
3. x' : ℝ^n
4. y : ℝ^n
5. y' : ℝ^n
6. i : ℕn
7. r0 < |((x i) + (y i)) - (x' i) + (y' i)|
⊢ (∃i:ℕn. (r0 < |(x i) - x' i|)) ∨ (∃i:ℕn. (r0 < |(y i) - y' i|))
BY
{ ((Assert (((x i) + (y i)) - (x' i) + (y' i)) = (((x i) - x' i) + ((y i) - y' i)) BY
Auto)
THEN (RWO "-1" (-2) THENA Auto)
THEN Thin (-1)) }
1
1. n : ℕ
2. x : ℝ^n
3. x' : ℝ^n
4. y : ℝ^n
5. y' : ℝ^n
6. i : ℕn
7. r0 < |((x i) - x' i) + ((y i) - y' i)|
⊢ (∃i:ℕn. (r0 < |(x i) - x' i|)) ∨ (∃i:ℕn. (r0 < |(y i) - y' i|))
Latex:
Latex:
1. n : \mBbbN{}
2. x : \mBbbR{}\^{}n
3. x' : \mBbbR{}\^{}n
4. y : \mBbbR{}\^{}n
5. y' : \mBbbR{}\^{}n
6. i : \mBbbN{}n
7. r0 < |((x i) + (y i)) - (x' i) + (y' i)|
\mvdash{} (\mexists{}i:\mBbbN{}n. (r0 < |(x i) - x' i|)) \mvee{} (\mexists{}i:\mBbbN{}n. (r0 < |(y i) - y' i|))
By
Latex:
((Assert (((x i) + (y i)) - (x' i) + (y' i)) = (((x i) - x' i) + ((y i) - y' i)) BY
Auto)
THEN (RWO "-1" (-2) THENA Auto)
THEN Thin (-1))
Home
Index