Nuprl Lemma : reg-seq-nexp_wf

[x:ℝ]. ∀[k:ℕ+].  (reg-seq-nexp(x;k) ∈ {f:ℕ+ ⟶ ℤ(k ((canon-bnd(x)^k 1 ÷ 2^k 1) 1)) 1-regular-seq(f)} )


Proof




Definitions occuring in Statement :  reg-seq-nexp: reg-seq-nexp(x;k) canon-bnd: canon-bnd(x) real: regular-int-seq: k-regular-seq(f) fastexp: i^n nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] divide: n ÷ m multiply: m subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: guard: {T} subtype_rel: A ⊆B int_nzero: -o nequal: a ≠ b ∈  reg-seq-nexp: reg-seq-nexp(x;k) real: top: Top int_upper: {i...} regular-int-seq: k-regular-seq(f) so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) le: A ≤ B squash: T true: True sq_type: SQType(T) ge: i ≥  cand: c∧ B less_than: a < b iff: ⇐⇒ Q rev_implies:  Q subtract: m rev_uimplies: rev_uimplies(P;Q) less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].
    (reg-seq-nexp(x;k)  \mmember{}  \{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  (k  *  ((canon-bnd(x)\^{}k  -  1  \mdiv{}  2\^{}k  -  1)  +  1))  +  1-regular-seq(f)\}  )



Date html generated: 2020_05_20-AM-10_55_39
Last ObjectModification: 2020_01_03-AM-00_54_03

Theory : reals


Home Index