Step
*
of Lemma
reg-seq-nexp_wf
No Annotations
∀[x:ℝ]. ∀[k:ℕ+]. (reg-seq-nexp(x;k) ∈ {f:ℕ+ ⟶ ℤ| (k * ((canon-bnd(x)^k - 1 ÷ 2^k - 1) + 1)) + 1-regular-seq(f)} )
BY
{ (Auto THEN (Assert 1 ≤ 2^k - 1 BY (RWO "exp-fastexp<" 0 THEN Auto)) THEN MemTypeCD THEN Auto) }
1
1. x : ℝ
2. k : ℕ+
3. 1 ≤ 2^k - 1
⊢ reg-seq-nexp(x;k) ∈ ℕ+ ⟶ ℤ
2
.....set predicate.....
1. x : ℝ
2. k : ℕ+
3. 1 ≤ 2^k - 1
⊢ (k * ((canon-bnd(x)^k - 1 ÷ 2^k - 1) + 1)) + 1-regular-seq(reg-seq-nexp(x;k))
Latex:
Latex:
No Annotations
\mforall{}[x:\mBbbR{}]. \mforall{}[k:\mBbbN{}\msupplus{}].
(reg-seq-nexp(x;k) \mmember{} \{f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}| (k * ((canon-bnd(x)\^{}k - 1 \mdiv{} 2\^{}k - 1) + 1)) + 1-regular-seq(f)\} )
By
Latex:
(Auto THEN (Assert 1 \mleq{} 2\^{}k - 1 BY (RWO "exp-fastexp<" 0 THEN Auto)) THEN MemTypeCD THEN Auto)
Home
Index