Step
*
of Lemma
regular-less
∀[x,y:ℝ]. ∀n:ℕ+. ((x n) + 4 < y n
⇒ (∀m:ℕ+. ((x m) ≤ ((y m) + 4))))
BY
{ (Auto
THEN Mul ⌜m⌝ (-2)⋅
THEN Mul ⌜n⌝ 0⋅
THEN Assert ⌜((m * (y n)) - 2 * (n + m)) ≤ (n * (y m))⌝ ∧ ((n * (x m)) ≤ ((m * (x n)) + (2 * (n + m))))⋅
THEN Auto'
THEN All Thin
THEN D 1
THEN Unhide
THEN Auto
THEN Unfold `regular-int-seq` 2
THEN (InstHyp [⌜n⌝;⌜m⌝] 2⋅ THENA Auto)
THEN (RWO "absval_ifthenelse" (-1) THENA Auto)
THEN SplitOnHypITE -1
THEN Auto') }
Latex:
Latex:
\mforall{}[x,y:\mBbbR{}]. \mforall{}n:\mBbbN{}\msupplus{}. ((x n) + 4 < y n {}\mRightarrow{} (\mforall{}m:\mBbbN{}\msupplus{}. ((x m) \mleq{} ((y m) + 4))))
By
Latex:
(Auto
THEN Mul \mkleeneopen{}m\mkleeneclose{} (-2)\mcdot{}
THEN Mul \mkleeneopen{}n\mkleeneclose{} 0\mcdot{}
THEN Assert \mkleeneopen{}((m * (y n)) - 2 * (n + m)) \mleq{} (n * (y m))\mkleeneclose{}
\mwedge{} ((n * (x m)) \mleq{} ((m * (x n)) + (2 * (n + m))))\mcdot{}
THEN Auto'
THEN All Thin
THEN D 1
THEN Unhide
THEN Auto
THEN Unfold `regular-int-seq` 2
THEN (InstHyp [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{}] 2\mcdot{} THENA Auto)
THEN (RWO "absval\_ifthenelse" (-1) THENA Auto)
THEN SplitOnHypITE -1
THEN Auto')
Home
Index