Step
*
3
1
1
1
of Lemma
regularize-k-regular
1. k : ℕ+
2. f : ℕ+ ⟶ ℤ
3. m : ℕ+
4. ¬↑regular-upto(k;m;f)
5. n : ℤ
6. 0 < n
7. ↑regular-upto(k;n;f)
8. v : ℕ
9. ¬↑regular-upto(k;v;f)
10. ∀[i:ℕ]. ¬¬↑regular-upto(k;i;f) supposing i < v
11. ¬(v = 1 ∈ ℤ)
12. ¬(v = 0 ∈ ℤ)
13. j : ℕ+
14. (v - 1) = j ∈ ℕ+
15. ∀n,m:ℕ+j + 1.
let j = seq-min-upper(k;j;f) in
let z = (r((f j) + (2 * k))/r((2 * k) * j)) in
(((r((f n) - 2 * k)/r((2 * k) * n)) ≤ z) ∧ (z ≤ (r((f n) + (2 * k))/r((2 * k) * n))))
∧ ((r((f m) - 2 * k)/r((2 * k) * m)) ≤ z)
∧ (z ≤ (r((f m) + (2 * k))/r((2 * k) * m)))
⊢ n < j + 1
BY
{ (SupposeNot THEN (Assert ↑regular-upto(k;n;f) BY Hypothesis) THEN (Assert ⌜↑regular-upto(k;v;f)⌝⋅ THENM Auto)) }
1
.....assertion.....
1. k : ℕ+
2. f : ℕ+ ⟶ ℤ
3. m : ℕ+
4. ¬↑regular-upto(k;m;f)
5. n : ℤ
6. 0 < n
7. ↑regular-upto(k;n;f)
8. v : ℕ
9. ¬↑regular-upto(k;v;f)
10. ∀[i:ℕ]. ¬¬↑regular-upto(k;i;f) supposing i < v
11. ¬(v = 1 ∈ ℤ)
12. ¬(v = 0 ∈ ℤ)
13. j : ℕ+
14. (v - 1) = j ∈ ℕ+
15. ∀n,m:ℕ+j + 1.
let j = seq-min-upper(k;j;f) in
let z = (r((f j) + (2 * k))/r((2 * k) * j)) in
(((r((f n) - 2 * k)/r((2 * k) * n)) ≤ z) ∧ (z ≤ (r((f n) + (2 * k))/r((2 * k) * n))))
∧ ((r((f m) - 2 * k)/r((2 * k) * m)) ≤ z)
∧ (z ≤ (r((f m) + (2 * k))/r((2 * k) * m)))
16. ¬n < j + 1
17. ↑regular-upto(k;n;f)
⊢ ↑regular-upto(k;v;f)
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. f : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. m : \mBbbN{}\msupplus{}
4. \mneg{}\muparrow{}regular-upto(k;m;f)
5. n : \mBbbZ{}
6. 0 < n
7. \muparrow{}regular-upto(k;n;f)
8. v : \mBbbN{}
9. \mneg{}\muparrow{}regular-upto(k;v;f)
10. \mforall{}[i:\mBbbN{}]. \mneg{}\mneg{}\muparrow{}regular-upto(k;i;f) supposing i < v
11. \mneg{}(v = 1)
12. \mneg{}(v = 0)
13. j : \mBbbN{}\msupplus{}
14. (v - 1) = j
15. \mforall{}n,m:\mBbbN{}\msupplus{}j + 1.
let j = seq-min-upper(k;j;f) in
let z = (r((f j) + (2 * k))/r((2 * k) * j)) in
(((r((f n) - 2 * k)/r((2 * k) * n)) \mleq{} z) \mwedge{} (z \mleq{} (r((f n) + (2 * k))/r((2 * k) * n))))
\mwedge{} ((r((f m) - 2 * k)/r((2 * k) * m)) \mleq{} z)
\mwedge{} (z \mleq{} (r((f m) + (2 * k))/r((2 * k) * m)))
\mvdash{} n < j + 1
By
Latex:
(SupposeNot
THEN (Assert \muparrow{}regular-upto(k;n;f) BY
Hypothesis)
THEN (Assert \mkleeneopen{}\muparrow{}regular-upto(k;v;f)\mkleeneclose{}\mcdot{} THENM Auto))
Home
Index