Step
*
of Lemma
rleq-limit-constant
∀[x:ℝ]. ∀[y:ℕ ⟶ ℝ]. ∀[a:ℝ]. (a ≤ x) supposing ((∀n:ℕ. (y[n] ≤ x)) and lim n→∞.y[n] = a)
BY
{ (Auto THEN InstLemma `rleq-limit` [⌜y⌝;⌜λ2n.x⌝;⌜a⌝;⌜x⌝]⋅ THEN Auto) }
Latex:
Latex:
\mforall{}[x:\mBbbR{}]. \mforall{}[y:\mBbbN{} {}\mrightarrow{} \mBbbR{}]. \mforall{}[a:\mBbbR{}]. (a \mleq{} x) supposing ((\mforall{}n:\mBbbN{}. (y[n] \mleq{} x)) and lim n\mrightarrow{}\minfty{}.y[n] = a)
By
Latex:
(Auto THEN InstLemma `rleq-limit` [\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n.x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index