Step
*
of Lemma
rleq-limit-constant
∀[x:ℝ]. ∀[y:ℕ ⟶ ℝ]. ∀[a:ℝ].  (a ≤ x) supposing ((∀n:ℕ. (y[n] ≤ x)) and lim n→∞.y[n] = a)
BY
{ (Auto THEN InstLemma `rleq-limit` [⌜y⌝;⌜λ2n.x⌝;⌜a⌝;⌜x⌝]⋅ THEN Auto) }
Latex:
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[a:\mBbbR{}].    (a  \mleq{}  x)  supposing  ((\mforall{}n:\mBbbN{}.  (y[n]  \mleq{}  x))  and  lim  n\mrightarrow{}\minfty{}.y[n]  =  a)
By
Latex:
(Auto  THEN  InstLemma  `rleq-limit`  [\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n.x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{}  THEN  Auto)
Home
Index