Step
*
2
of Lemma
rminimum-positive
1. n : ℤ
2. m : ℤ
3. n ≤ m
4. x : {n..m + 1-} ⟶ ℝ
5. ∀i:{n..m + 1-}. (r0 < x[i])
⊢ r0 < rminimum(n;m;i.x[i])
BY
{ ((RepeatFor 2 (MoveToConcl (-1)) THEN Unfold `so_apply` 0)
THEN Unfold `rminimum` 0
THEN (GenConcl ⌜(m - n) = d ∈ ℕ⌝⋅ THENA Auto')
THEN (Subst ⌜m ~ n + d⌝ 0⋅
THENL [Auto'
; (ThinVar `m'
THEN (NatInd (-1))
THEN Reduce 0
THEN Auto
THEN (RWO "primrec-unroll" 0 THENA Auto)
THEN (OReduce 0 THENA Auto))]
)) }
1
1. n : ℤ
2. d : ℤ
3. [%1] : 0 < d
4. ∀x:{n..(n + (d - 1)) + 1-} ⟶ ℝ
((∀i:{n..(n + (d - 1)) + 1-}. (r0 < (x i)))
⇒ (r0 < primrec(d - 1;x n;λi,s. rmin(s;x (n + i + 1)))))
5. x : {n..(n + d) + 1-} ⟶ ℝ
6. ∀i:{n..(n + d) + 1-}. (r0 < (x i))
⊢ r0 < rmin(primrec(d - 1;x n;λi,s. rmin(s;x (n + i + 1)));x (n + (d - 1) + 1))
Latex:
Latex:
1. n : \mBbbZ{}
2. m : \mBbbZ{}
3. n \mleq{} m
4. x : \{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}
5. \mforall{}i:\{n..m + 1\msupminus{}\}. (r0 < x[i])
\mvdash{} r0 < rminimum(n;m;i.x[i])
By
Latex:
((RepeatFor 2 (MoveToConcl (-1)) THEN Unfold `so\_apply` 0)
THEN Unfold `rminimum` 0
THEN (GenConcl \mkleeneopen{}(m - n) = d\mkleeneclose{}\mcdot{} THENA Auto')
THEN (Subst \mkleeneopen{}m \msim{} n + d\mkleeneclose{} 0\mcdot{}
THENL [Auto'
; (ThinVar `m'
THEN (NatInd (-1))
THEN Reduce 0
THEN Auto
THEN (RWO "primrec-unroll" 0 THENA Auto)
THEN (OReduce 0 THENA Auto))]
))
Home
Index