Step
*
of Lemma
rminimum_functionality
∀[n,m:ℤ].
∀[x,y:{n..m + 1-} ⟶ ℝ].
rminimum(n;m;k.x[k]) = rminimum(n;m;k.y[k]) supposing ∀k:ℤ. ((n ≤ k)
⇒ (k ≤ m)
⇒ (x[k] = y[k]))
supposing n ≤ m
BY
{ (Auto
THEN RepeatFor 3 (MoveToConcl (-1))
THEN Unfold `rminimum` 0
THEN (GenConcl ⌜(m - n) = k ∈ ℕ⌝⋅ THENA Auto')
THEN (Subst ⌜m ~ n + k⌝ 0⋅ THENL [Auto'; (ThinVar `m' THEN (NatInd (-1)) THEN Reduce 0)])) }
1
1. n : ℤ
2. k : ℤ
⊢ ∀x,y:{n..(n + 0) + 1-} ⟶ ℝ. ((∀k@0:ℤ. ((n ≤ k@0)
⇒ (k@0 ≤ (n + 0))
⇒ (x[k@0] = y[k@0])))
⇒ (x[n] = y[n]))
2
.....upcase.....
1. n : ℤ
2. k : ℤ
3. 0 < k
4. ∀x,y:{n..(n + (k - 1)) + 1-} ⟶ ℝ.
((∀k@0:ℤ. ((n ≤ k@0)
⇒ (k@0 ≤ (n + (k - 1)))
⇒ (x[k@0] = y[k@0])))
⇒ (primrec(k - 1;x[n];λi,s. rmin(s;x[n + i + 1])) = primrec(k - 1;y[n];λi,s. rmin(s;y[n + i + 1]))))
⊢ ∀x,y:{n..(n + k) + 1-} ⟶ ℝ.
((∀k@0:ℤ. ((n ≤ k@0)
⇒ (k@0 ≤ (n + k))
⇒ (x[k@0] = y[k@0])))
⇒ (primrec(k;x[n];λi,s. rmin(s;x[n + i + 1])) = primrec(k;y[n];λi,s. rmin(s;y[n + i + 1]))))
Latex:
Latex:
\mforall{}[n,m:\mBbbZ{}].
\mforall{}[x,y:\{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}].
rminimum(n;m;k.x[k]) = rminimum(n;m;k.y[k])
supposing \mforall{}k:\mBbbZ{}. ((n \mleq{} k) {}\mRightarrow{} (k \mleq{} m) {}\mRightarrow{} (x[k] = y[k]))
supposing n \mleq{} m
By
Latex:
(Auto
THEN RepeatFor 3 (MoveToConcl (-1))
THEN Unfold `rminimum` 0
THEN (GenConcl \mkleeneopen{}(m - n) = k\mkleeneclose{}\mcdot{} THENA Auto')
THEN (Subst \mkleeneopen{}m \msim{} n + k\mkleeneclose{} 0\mcdot{} THENL [Auto'; (ThinVar `m' THEN (NatInd (-1)) THEN Reduce 0)]))
Home
Index