Step
*
2
1
of Lemma
rminimum_functionality_wrt_rleq
1. n : ℤ
2. k : ℤ
3. 0 < k
4. ∀x,y:{n..(n + (k - 1)) + 1-} ⟶ ℝ.
((∀k@0:ℤ. ((n ≤ k@0)
⇒ (k@0 ≤ (n + (k - 1)))
⇒ (x[k@0] ≤ y[k@0])))
⇒ (primrec(k - 1;x[n];λi,s. rmin(s;x[n + i + 1])) ≤ primrec(k - 1;y[n];λi,s. rmin(s;y[n + i + 1]))))
5. 1 ≤ k
⊢ ∀x,y@0:{n..(n + k) + 1-} ⟶ ℝ.
((∀k@0:ℤ. ((n ≤ k@0)
⇒ (k@0 ≤ (n + k))
⇒ (x[k@0] ≤ y@0[k@0])))
⇒ (rmin(primrec(k - 1;x[n];λi,s. rmin(s;x[n + i + 1]));x[n
+ (k - 1)
+ 1]) ≤ rmin(primrec(k - 1;y@0[n];λi,s. rmin(s;y@0[n + i + 1]));y@0[n + (k - 1) + 1])))
BY
{ (ParallelOp (-2)
THEN RepeatFor 2 (ParallelLast)
THEN Try ((BLemma `rmin_functionality_wrt_rleq` THEN Auto))
THEN RepeatFor 3 (ParallelLast)
THEN Auto') }
Latex:
Latex:
1. n : \mBbbZ{}
2. k : \mBbbZ{}
3. 0 < k
4. \mforall{}x,y:\{n..(n + (k - 1)) + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}.
((\mforall{}k@0:\mBbbZ{}. ((n \mleq{} k@0) {}\mRightarrow{} (k@0 \mleq{} (n + (k - 1))) {}\mRightarrow{} (x[k@0] \mleq{} y[k@0])))
{}\mRightarrow{} (primrec(k - 1;x[n];\mlambda{}i,s. rmin(s;x[n + i + 1])) \mleq{} primrec(k - 1;y[n];\mlambda{}i,s. rmin(s;y[n + i + \000C1]))))
5. 1 \mleq{} k
\mvdash{} \mforall{}x,y@0:\{n..(n + k) + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}.
((\mforall{}k@0:\mBbbZ{}. ((n \mleq{} k@0) {}\mRightarrow{} (k@0 \mleq{} (n + k)) {}\mRightarrow{} (x[k@0] \mleq{} y@0[k@0])))
{}\mRightarrow{} (rmin(primrec(k - 1;x[n];\mlambda{}i,s. rmin(s;x[n + i + 1]));x[n
+ (k - 1)
+ 1]) \mleq{} rmin(primrec(k - 1;y@0[n];\mlambda{}i,s. rmin(s;y@0[n + i + 1]));y@0[n + (k - 1) + 1])))
By
Latex:
(ParallelOp (-2)
THEN RepeatFor 2 (ParallelLast)
THEN Try ((BLemma `rmin\_functionality\_wrt\_rleq` THEN Auto))
THEN RepeatFor 3 (ParallelLast)
THEN Auto')
Home
Index