Nuprl Lemma : rmul-int-fractions

[a,b:ℤ]. ∀[c,d:ℕ+].  (((r(a)/r(c)) (r(b)/r(d))) (r(a b)/r(c d)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) req: y rmul: b int-to-real: r(n) nat_plus: + uall: [x:A]. B[x] multiply: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: nequal: a ≠ b ∈  subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[c,d:\mBbbN{}\msupplus{}].    (((r(a)/r(c))  *  (r(b)/r(d)))  =  (r(a  *  b)/r(c  *  d)))



Date html generated: 2020_05_20-AM-11_00_54
Last ObjectModification: 2020_01_02-PM-02_12_40

Theory : reals


Home Index