Step
*
1
of Lemma
rnonneg-rmul
1. x : ℝ
2. y : ℝ
3. ∀n:ℕ+. ∃N:ℕ+. ∀m:{N...}. (((-2) * m) ≤ (n * (x m)))
4. ∀n:ℕ+. ∃N:ℕ+. ∀m:{N...}. (((-2) * m) ≤ (n * (y m)))
5. n : ℕ+
⊢ ∃N:ℕ+. ∀m:{N...}. (((-2) * m) ≤ (n * (((x m) * (y m)) ÷ 2 * m)))
BY
{ ((InstHyp [⌜(2 * canonical-bound(y)) * n⌝] 3⋅ THENA Auto)
THEN (InstHyp [⌜(2 * canonical-bound(x)) * n⌝] 4⋅ THENA Auto)
THEN ExRepD) }
1
1. x : ℝ
2. y : ℝ
3. ∀n:ℕ+. ∃N:ℕ+. ∀m:{N...}. (((-2) * m) ≤ (n * (x m)))
4. ∀n:ℕ+. ∃N:ℕ+. ∀m:{N...}. (((-2) * m) ≤ (n * (y m)))
5. n : ℕ+
6. N1 : ℕ+
7. ∀m:{N1...}. (((-2) * m) ≤ (((2 * canonical-bound(y)) * n) * (x m)))
8. N : ℕ+
9. ∀m:{N...}. (((-2) * m) ≤ (((2 * canonical-bound(x)) * n) * (y m)))
⊢ ∃N:ℕ+. ∀m:{N...}. (((-2) * m) ≤ (n * (((x m) * (y m)) ÷ 2 * m)))
Latex:
Latex:
1. x : \mBbbR{}
2. y : \mBbbR{}
3. \mforall{}n:\mBbbN{}\msupplus{}. \mexists{}N:\mBbbN{}\msupplus{}. \mforall{}m:\{N...\}. (((-2) * m) \mleq{} (n * (x m)))
4. \mforall{}n:\mBbbN{}\msupplus{}. \mexists{}N:\mBbbN{}\msupplus{}. \mforall{}m:\{N...\}. (((-2) * m) \mleq{} (n * (y m)))
5. n : \mBbbN{}\msupplus{}
\mvdash{} \mexists{}N:\mBbbN{}\msupplus{}. \mforall{}m:\{N...\}. (((-2) * m) \mleq{} (n * (((x m) * (y m)) \mdiv{} 2 * m)))
By
Latex:
((InstHyp [\mkleeneopen{}(2 * canonical-bound(y)) * n\mkleeneclose{}] 3\mcdot{} THENA Auto)
THEN (InstHyp [\mkleeneopen{}(2 * canonical-bound(x)) * n\mkleeneclose{}] 4\mcdot{} THENA Auto)
THEN ExRepD)
Home
Index