Nuprl Lemma : rprod_functionality

[n,m:ℤ]. ∀[x,y:{n..m 1-} ⟶ ℝ].  rprod(n;m;k.x[k]) rprod(n;m;k.y[k]) supposing x[k] y[k] for k ∈ [n,m]


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) pointwise-req: x[k] y[k] for k ∈ [n,m] req: y real: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: all: x:A. B[x] nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q rprod: rprod(n;m;k.x[k]) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q pointwise-req: x[k] y[k] for k ∈ [n,m] rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    rprod(n;m;k.x[k])  =  rprod(n;m;k.y[k])  supposing  x[k]  =  y[k]  for  k  \mmember{}  [n,m]



Date html generated: 2020_05_20-AM-11_12_34
Last ObjectModification: 2020_03_20-AM-10_40_13

Theory : reals


Home Index