Step
*
of Lemma
rroot-exists1-ext
No Annotations
∀i:{2...}. ∀x:{x:ℝ| (↑isEven(i))
⇒ (r0 ≤ x)} .
∃q:{q:ℕ ⟶ ℝ|
(∀n,m:ℕ. (((r0 ≤ (q n)) ∧ (r0 ≤ (q m))) ∨ (((q n) ≤ r0) ∧ ((q m) ≤ r0))))
∧ ((↑isEven(i))
⇒ (∀m:ℕ. (r0 ≤ (q m))))}
lim n→∞.q n^i = x
BY
{ Extract of Obid: rroot-exists1
not unfolding divide near-root rlessw mu-ge absval
finishing with Auto
normalizes to:
λi,x. eval xx = x in
<λn.eval p = xx (2 * (n + 1)) in
if (1 * 4 * (n + 1)) < (p * 2 * (n + 1))
then if (p * 2 * (n + 1)) < ((-1) * 4 * (n + 1))
then eval r = near-root(i;p;4 * (n + 1);2 * (n + 1)) in
let r1,r2 = r
in eval k = r2 in
λn.((2 * n * r1) ÷ k)
else eval r = near-root(i;p;4 * (n + 1);2 * (n + 1)) in
let r1,r2 = r
in eval k = r2 in
λn.((2 * n * r1) ÷ k)
else if (p * 2 * (n + 1)) < ((-1) * 4 * (n + 1))
then eval r = near-root(i;p;4 * (n + 1);2 * (n + 1)) in
let r1,r2 = r
in eval k = r2 in
λn.((2 * n * r1) ÷ k)
else (λk.(2 * k * 0))
, λk.(k - 1)
> }
Latex:
Latex:
No Annotations
\mforall{}i:\{2...\}. \mforall{}x:\{x:\mBbbR{}| (\muparrow{}isEven(i)) {}\mRightarrow{} (r0 \mleq{} x)\} .
\mexists{}q:\{q:\mBbbN{} {}\mrightarrow{} \mBbbR{}|
(\mforall{}n,m:\mBbbN{}. (((r0 \mleq{} (q n)) \mwedge{} (r0 \mleq{} (q m))) \mvee{} (((q n) \mleq{} r0) \mwedge{} ((q m) \mleq{} r0))))
\mwedge{} ((\muparrow{}isEven(i)) {}\mRightarrow{} (\mforall{}m:\mBbbN{}. (r0 \mleq{} (q m))))\}
lim n\mrightarrow{}\minfty{}.q n\^{}i = x
By
Latex:
Extract of Obid: rroot-exists1
not unfolding divide near-root rlessw mu-ge absval
finishing with Auto
normalizes to:
\mlambda{}i,x. eval xx = x in
<\mlambda{}n.eval p = xx (2 * (n + 1)) in
if (1 * 4 * (n + 1)) < (p * 2 * (n + 1))
then if (p * 2 * (n + 1)) < ((-1) * 4 * (n + 1))
then eval r = near-root(i;p;4 * (n + 1);2 * (n + 1)) in
let r1,r2 = r
in eval k = r2 in
\mlambda{}n.((2 * n * r1) \mdiv{} k)
else eval r = near-root(i;p;4 * (n + 1);2 * (n + 1)) in
let r1,r2 = r
in eval k = r2 in
\mlambda{}n.((2 * n * r1) \mdiv{} k)
else if (p * 2 * (n + 1)) < ((-1) * 4 * (n + 1))
then eval r = near-root(i;p;4 * (n + 1);2 * (n + 1)) in
let r1,r2 = r
in eval k = r2 in
\mlambda{}n.((2 * n * r1) \mdiv{} k)
else (\mlambda{}k.(2 * k * 0))
, \mlambda{}k.(k - 1)
>
Home
Index