Nuprl Lemma : rroot_wf
∀[i:{2...}]. ∀[x:{x:ℝ| (↑isEven(i))
⇒ (r0 ≤ x)} ]. (rroot(i;x) ∈ {y:ℝ| ((↑isEven(i))
⇒ (r0 ≤ y)) ∧ (y^i = x)} )
Proof
Definitions occuring in Statement :
rroot: rroot(i;x)
,
rleq: x ≤ y
,
rnexp: x^k1
,
req: x = y
,
int-to-real: r(n)
,
real: ℝ
,
isEven: isEven(n)
,
int_upper: {i...}
,
assert: ↑b
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
member: t ∈ T
,
set: {x:A| B[x]}
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
rroot: rroot(i;x)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
bfalse: ff
,
subtype_rel: A ⊆r B
,
int_upper: {i...}
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
rev_uimplies: rev_uimplies(P;Q)
,
cand: A c∧ B
,
true: True
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
ge: i ≥ j
,
guard: {T}
,
int-to-real: r(n)
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
le: A ≤ B
,
top: Top
,
sq_type: SQType(T)
,
bnot: ¬bb
,
bor: p ∨bq
,
real: ℝ
,
bdd-diff: bdd-diff(f;g)
,
rroot-abs: rroot-abs(i;x)
,
rminus: -(x)
,
rroot-odd: rroot-odd(i;x)
,
has-value: (a)↓
,
absval: |i|
,
subtract: n - m
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
req: x = y
,
rless: x < y
,
sq_exists: ∃x:A [B[x]]
,
accelerate: accelerate(k;f)
,
nequal: a ≠ b ∈ T
,
int_nzero: ℤ-o
,
sq_stable: SqStable(P)
Latex:
\mforall{}[i:\{2...\}]. \mforall{}[x:\{x:\mBbbR{}| (\muparrow{}isEven(i)) {}\mRightarrow{} (r0 \mleq{} x)\} ].
(rroot(i;x) \mmember{} \{y:\mBbbR{}| ((\muparrow{}isEven(i)) {}\mRightarrow{} (r0 \mleq{} y)) \mwedge{} (y\^{}i = x)\} )
Date html generated:
2020_05_20-PM-00_31_20
Last ObjectModification:
2020_01_03-PM-06_51_56
Theory : reals
Home
Index