Step
*
of Lemma
rsum_functionality_wrt_rleq2
∀[n,m:ℤ]. ∀[x,y:{n..m + 1-} ⟶ ℝ].
Σ{x[k] | n≤k≤m} ≤ Σ{y[k] | n≤k≤m} supposing ∀k:ℤ. ((n ≤ k)
⇒ (k ≤ m)
⇒ (x[k] ≤ y[k]))
BY
{ (Fold `pointwise-rleq` 0 THEN InstLemma `rsum_functionality_wrt_rleq` [] THEN Trivial) }
Latex:
Latex:
\mforall{}[n,m:\mBbbZ{}]. \mforall{}[x,y:\{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}].
\mSigma{}\{x[k] | n\mleq{}k\mleq{}m\} \mleq{} \mSigma{}\{y[k] | n\mleq{}k\mleq{}m\} supposing \mforall{}k:\mBbbZ{}. ((n \mleq{} k) {}\mRightarrow{} (k \mleq{} m) {}\mRightarrow{} (x[k] \mleq{} y[k]))
By
Latex:
(Fold `pointwise-rleq` 0 THEN InstLemma `rsum\_functionality\_wrt\_rleq` [] THEN Trivial)
Home
Index