Nuprl Lemma : rv-circle-circle-lemma3'

a,b,c,d:ℝ^2. ∀p:{p:ℝ^2| ab=ap} . ∀q:{q:ℝ^2| cd=cq} . ∀x:{x:ℝ^2| cp=cx ∧ (c ≠ x ∧ x ≠ d ∧ c-x-d)))} .
y:{y:ℝ^2| aq=ay ∧ (a ≠ y ∧ y ≠ b ∧ a-y-b)))} .
  (a ≠ c
   (∃u,v:{p:ℝ^2| ab=ap ∧ cd=cp} (((d(a;y) < d(a;b)) ∧ (d(c;x) < d(c;d)))  (r2-left(u;c;a) ∧ r2-left(v;a;c)))))


Proof




Definitions occuring in Statement :  r2-left: r2-left(p;q;r) rv-between: a-b-c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec-dist: d(x;y) real-vec: ^n rless: x < y all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False prop: rv-congruent: ab=cd subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T real-vec-dist: d(x;y) iff: ⇐⇒ Q guard: {T} uimplies: supposing a rev_implies:  Q stable: Stable{P} or: P ∨ Q top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) nat_plus: + sq_exists: x:A [B[x]] rless: x < y real-vec-sep: a ≠ b rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) rge: x ≥ y req_int_terms: t1 ≡ t2 cand: c∧ B rv-between: a-b-c true: True lelt: i ≤ j < k int_seg: {i..j-} real-vec: ^n req-vec: req-vec(n;x;y) real-vec-sub: Y real-vec-add: Y less_than: a < b r2-left: r2-left(p;q;r) r2-det: |pqr|

Latex:
\mforall{}a,b,c,d:\mBbbR{}\^{}2.  \mforall{}p:\{p:\mBbbR{}\^{}2|  ab=ap\}  .  \mforall{}q:\{q:\mBbbR{}\^{}2|  cd=cq\}  .  \mforall{}x:\{x:\mBbbR{}\^{}2| 
                                                                                                                cp=cx  \mwedge{}  (\mneg{}(c  \mneq{}  x  \mwedge{}  x  \mneq{}  d  \mwedge{}  (\mneg{}c-x-d)))\}  .
\mforall{}y:\{y:\mBbbR{}\^{}2|  aq=ay  \mwedge{}  (\mneg{}(a  \mneq{}  y  \mwedge{}  y  \mneq{}  b  \mwedge{}  (\mneg{}a-y-b)))\}  .
    (a  \mneq{}  c
    {}\mRightarrow{}  (\mexists{}u,v:\{p:\mBbbR{}\^{}2|  ab=ap  \mwedge{}  cd=cp\} 
              (((d(a;y)  <  d(a;b))  \mwedge{}  (d(c;x)  <  d(c;d)))  {}\mRightarrow{}  (r2-left(u;c;a)  \mwedge{}  r2-left(v;a;c)))))



Date html generated: 2020_05_20-PM-01_01_04
Last ObjectModification: 2020_01_06-PM-00_31_47

Theory : reals


Home Index