Step
*
of Lemma
rv-pos-angle-linearity
∀n:ℕ. ∀a,b,c:ℝ^n. (rv-pos-angle(n;a;b;c)
⇒ (∀t:ℝ. ((r0 < |t|)
⇒ rv-pos-angle(n;b + t*a - b;b;c))))
BY
{ (Auto THEN ParallelOp -3 THEN (Assert req-vec(n;b + t*a - b - b;t*a - b) BY Auto)) }
1
.....assertion.....
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. c : ℝ^n
5. |a - b⋅c - b| < (||a - b|| * ||c - b||)
6. t : ℝ
7. r0 < |t|
⊢ req-vec(n;b + t*a - b - b;t*a - b)
2
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. c : ℝ^n
5. |a - b⋅c - b| < (||a - b|| * ||c - b||)
6. t : ℝ
7. r0 < |t|
8. req-vec(n;b + t*a - b - b;t*a - b)
⊢ |b + t*a - b - b⋅c - b| < (||b + t*a - b - b|| * ||c - b||)
Latex:
Latex:
\mforall{}n:\mBbbN{}. \mforall{}a,b,c:\mBbbR{}\^{}n.
(rv-pos-angle(n;a;b;c) {}\mRightarrow{} (\mforall{}t:\mBbbR{}. ((r0 < |t|) {}\mRightarrow{} rv-pos-angle(n;b + t*a - b;b;c))))
By
Latex:
(Auto THEN ParallelOp -3 THEN (Assert req-vec(n;b + t*a - b - b;t*a - b) BY Auto))
Home
Index