Step
*
2
of Lemma
simple-glueing
1. [X] : Type
2. [dX] : metric(X)
3. [A] : X ⟶ ℙ
4. [B] : X ⟶ ℙ
5. ∀x1,x2:X. (x1 ≡ x2
⇒ A[x1]
⇒ A[x2])
6. ∀x1,x2:X. (x1 ≡ x2
⇒ B[x1]
⇒ B[x2])
7. c : ∀x:X. (A[x] ∨ B[x])
8. [Y] : Type
9. [dY] : metric(Y)
10. f : FUN({x:X| A[x]} ⟶ Y)
11. g : FUN({x:X| B[x]} ⟶ Y)
12. ∀x:X. ((A[x] ∧ B[x])
⇒ f x ≡ g x)
⊢ ∀x:X
((A[x]
⇒ case c x of inl(a) => f x | inr(b) => g x ≡ f x)
∧ (B[x]
⇒ case c x of inl(a) => f x | inr(b) => g x ≡ g x))
BY
{ (((D 0 THENA Auto) THEN (GenConclTerm ⌜c x⌝⋅ THENA Auto))
THEN D -2
THEN Reduce 0
THEN Auto
THEN BLemma `meq_inversion`
THEN Auto) }
Latex:
Latex:
1. [X] : Type
2. [dX] : metric(X)
3. [A] : X {}\mrightarrow{} \mBbbP{}
4. [B] : X {}\mrightarrow{} \mBbbP{}
5. \mforall{}x1,x2:X. (x1 \mequiv{} x2 {}\mRightarrow{} A[x1] {}\mRightarrow{} A[x2])
6. \mforall{}x1,x2:X. (x1 \mequiv{} x2 {}\mRightarrow{} B[x1] {}\mRightarrow{} B[x2])
7. c : \mforall{}x:X. (A[x] \mvee{} B[x])
8. [Y] : Type
9. [dY] : metric(Y)
10. f : FUN(\{x:X| A[x]\} {}\mrightarrow{} Y)
11. g : FUN(\{x:X| B[x]\} {}\mrightarrow{} Y)
12. \mforall{}x:X. ((A[x] \mwedge{} B[x]) {}\mRightarrow{} f x \mequiv{} g x)
\mvdash{} \mforall{}x:X
((A[x] {}\mRightarrow{} case c x of inl(a) => f x | inr(b) => g x \mequiv{} f x)
\mwedge{} (B[x] {}\mRightarrow{} case c x of inl(a) => f x | inr(b) => g x \mequiv{} g x))
By
Latex:
(((D 0 THENA Auto) THEN (GenConclTerm \mkleeneopen{}c x\mkleeneclose{}\mcdot{} THENA Auto))
THEN D -2
THEN Reduce 0
THEN Auto
THEN BLemma `meq\_inversion`
THEN Auto)
Home
Index