Step
*
of Lemma
sine-exists
No Annotations
∀x:ℝ. ∃a:ℝ. Σi.-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! = a
BY
{ ((D 0 THENA Auto)
THEN (Evaluate ⌜y = x ∈ ℝ⌝⋅ THENA (Auto THEN D 0 THEN With ⌜1⌝ (D 0)⋅ THEN Auto))⋅
THEN RWO "-1<" 0
THEN Auto'
THEN ThinVar `x'
THEN RenameVar `x' 1
THEN Auto
THEN (InstLemma `r-archimedean-rabs` [⌜x⌝]⋅ THENA Auto)
THEN ExRepD
THEN RenameVar `b' (-2)
THEN (Evaluate ⌜c = b ∈ ℕ⌝⋅ THENA Auto)
THEN (Assert |x| ≤ r(c) BY
(HypSubst' (-1) 0 THEN Trivial))
THEN ThinVar `b'
THEN RenameTo `b' `c'
THEN (InstLemma `rdiv-factorial-lemma3` [⌜x⌝]⋅ THENA Auto)
THEN Assert ⌜∃a:ℝ. Σi.-1^i * (x^2 * i)/((2 * i) + 1)! = a⌝⋅) }
1
.....assertion.....
1. x : ℝ
2. b : ℕ
3. |x| ≤ r(b)
4. ∀b:ℕ. (((x * x) ≤ r(b * b))
⇒ (∀n:ℕ. (((b ÷ 2) ≤ n)
⇒ ((x * x) ≤ (r(((2 * (n + 1)) + 1)!)/r(((2 * n) + 1)!))))))
⊢ ∃a:ℝ. Σi.-1^i * (x^2 * i)/((2 * i) + 1)! = a
2
1. x : ℝ
2. b : ℕ
3. |x| ≤ r(b)
4. ∀b:ℕ. (((x * x) ≤ r(b * b))
⇒ (∀n:ℕ. (((b ÷ 2) ≤ n)
⇒ ((x * x) ≤ (r(((2 * (n + 1)) + 1)!)/r(((2 * n) + 1)!))))))
5. ∃a:ℝ. Σi.-1^i * (x^2 * i)/((2 * i) + 1)! = a
⊢ ∃a:ℝ. Σi.-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! = a
Latex:
Latex:
No Annotations
\mforall{}x:\mBbbR{}. \mexists{}a:\mBbbR{}. \mSigma{}i.-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! = a
By
Latex:
((D 0 THENA Auto)
THEN (Evaluate \mkleeneopen{}y = x\mkleeneclose{}\mcdot{} THENA (Auto THEN D 0 THEN With \mkleeneopen{}1\mkleeneclose{} (D 0)\mcdot{} THEN Auto))\mcdot{}
THEN RWO "-1<" 0
THEN Auto'
THEN ThinVar `x'
THEN RenameVar `x' 1
THEN Auto
THEN (InstLemma `r-archimedean-rabs` [\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ExRepD
THEN RenameVar `b' (-2)
THEN (Evaluate \mkleeneopen{}c = b\mkleeneclose{}\mcdot{} THENA Auto)
THEN (Assert |x| \mleq{} r(c) BY
(HypSubst' (-1) 0 THEN Trivial))
THEN ThinVar `b'
THEN RenameTo `b' `c'
THEN (InstLemma `rdiv-factorial-lemma3` [\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Assert \mkleeneopen{}\mexists{}a:\mBbbR{}. \mSigma{}i.-1\^{}i * (x\^{}2 * i)/((2 * i) + 1)! = a\mkleeneclose{}\mcdot{})
Home
Index