Step
*
2
3
of Lemma
sine-poly-approx-1
.....antecedent.....
1. x : {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
2. k : ℕ
3. e : {e:ℝ| r0 < e}
4. k1 : ℕ+
5. (r1/r(k1)) < e
6. N : ℕ
7. ∀i:ℕ. ((N ≤ i)
⇒ (|Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤i} - sine(x)| ≤ (r1/r(k1))))
8. |sine(x) - Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤N}| ≤ (r1/r(k1))
9. ¬(N ≤ k)
⊢ lim n→∞.(x^(2 * n) + 1)/((2 * n) + 1)! = r0
BY
{ (Assert lim i→∞.(x^2 * i)/((2 * i) + 1)! = r0 BY
((InstLemma `rdiv-factorial-limit-zero-from-bound2` [⌜x⌝;⌜1⌝]⋅
THENA (Auto THEN RWO "rabs-of-nonneg" 0 THEN Auto)
)⋅
THEN (InstLemma `subsequence-converges` [⌜r0⌝;⌜λ2n.(|x|^n/r((n + 1)!))⌝]⋅ THENM BHyp (-1))⋅
THEN Auto)) }
1
.....aux.....
1. x : {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
2. k : ℕ
3. e : {e:ℝ| r0 < e}
4. k1 : ℕ+
5. (r1/r(k1)) < e
6. N : ℕ
7. ∀i:ℕ. ((N ≤ i)
⇒ (|Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤i} - sine(x)| ≤ (r1/r(k1))))
8. |sine(x) - Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤N}| ≤ (r1/r(k1))
9. ¬(N ≤ k)
10. lim n→∞.(|x|^n/r((n + 1)!)) = r0
11. ∀y:ℕ ⟶ ℝ
((∃N:ℕ. ∀n:ℕ. ∃m:ℕ. ((n ≤ m) ∧ (y[n] = (|x|^m/r((m + 1)!)))) supposing N ≤ n)
⇒ lim n→∞.(|x|^n/r((n + 1)!)) = r0
⇒ lim n→∞.y[n] = r0)
⊢ ∃N:ℕ. ∀i:ℕ. ∃m:ℕ. ((i ≤ m) ∧ ((x^2 * i)/((2 * i) + 1)! = (|x|^m/r((m + 1)!)))) supposing N ≤ i
2
1. x : {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
2. k : ℕ
3. e : {e:ℝ| r0 < e}
4. k1 : ℕ+
5. (r1/r(k1)) < e
6. N : ℕ
7. ∀i:ℕ. ((N ≤ i)
⇒ (|Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤i} - sine(x)| ≤ (r1/r(k1))))
8. |sine(x) - Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤N}| ≤ (r1/r(k1))
9. ¬(N ≤ k)
10. lim i→∞.(x^2 * i)/((2 * i) + 1)! = r0
⊢ lim n→∞.(x^(2 * n) + 1)/((2 * n) + 1)! = r0
Latex:
Latex:
.....antecedent.....
1. x : \{x:\mBbbR{}| (r0 \mleq{} x) \mwedge{} (x \mleq{} r1)\}
2. k : \mBbbN{}
3. e : \{e:\mBbbR{}| r0 < e\}
4. k1 : \mBbbN{}\msupplus{}
5. (r1/r(k1)) < e
6. N : \mBbbN{}
7. \mforall{}i:\mBbbN{}. ((N \mleq{} i) {}\mRightarrow{} (|\mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}i\} - sine(x)| \mleq{} (r1/r(k1))))
8. |sine(x) - \mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}N\}| \mleq{} (r1/r(k1))
9. \mneg{}(N \mleq{} k)
\mvdash{} lim n\mrightarrow{}\minfty{}.(x\^{}(2 * n) + 1)/((2 * n) + 1)! = r0
By
Latex:
(Assert lim i\mrightarrow{}\minfty{}.(x\^{}2 * i)/((2 * i) + 1)! = r0 BY
((InstLemma `rdiv-factorial-limit-zero-from-bound2` [\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}1\mkleeneclose{}]\mcdot{}
THENA (Auto THEN RWO "rabs-of-nonneg" 0 THEN Auto)
)\mcdot{}
THEN (InstLemma `subsequence-converges` [\mkleeneopen{}r0\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n.(|x|\^{}n/r((n + 1)!))\mkleeneclose{}]\mcdot{} THENM BHyp (-1))\mcdot{}
THEN Auto))
Home
Index