Step
*
1
1
of Lemma
subsequence-converges
1. a : ℝ
2. x : ℕ ⟶ ℝ
3. y : ℕ ⟶ ℝ
4. N1 : ℕ
5. ∀n:ℕ. ∃m:ℕ. ((n ≤ m) ∧ (y[n] = x[m])) supposing N1 ≤ n
6. ∀k:ℕ+. (∃N:{ℕ| (∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - a| ≤ (r1/r(k)))))})
7. k : ℕ+
8. N : ℕ
9. ∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - a| ≤ (r1/r(k))))
10. n : ℕ
11. imax(N;N1) ≤ n
⊢ |y[n] - a| ≤ (r1/r(k))
BY
{ (FLemma `imax_lb` [-1] THEN Auto) }
1
1. a : ℝ
2. x : ℕ ⟶ ℝ
3. y : ℕ ⟶ ℝ
4. N1 : ℕ
5. ∀n:ℕ. ∃m:ℕ. ((n ≤ m) ∧ (y[n] = x[m])) supposing N1 ≤ n
6. ∀k:ℕ+. (∃N:{ℕ| (∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - a| ≤ (r1/r(k)))))})
7. k : ℕ+
8. N : ℕ
9. ∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - a| ≤ (r1/r(k))))
10. n : ℕ
11. imax(N;N1) ≤ n
12. N ≤ n
13. N1 ≤ n
⊢ |y[n] - a| ≤ (r1/r(k))
Latex:
Latex:
1. a : \mBbbR{}
2. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
3. y : \mBbbN{} {}\mrightarrow{} \mBbbR{}
4. N1 : \mBbbN{}
5. \mforall{}n:\mBbbN{}. \mexists{}m:\mBbbN{}. ((n \mleq{} m) \mwedge{} (y[n] = x[m])) supposing N1 \mleq{} n
6. \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\{\mBbbN{}| (\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|x[n] - a| \mleq{} (r1/r(k)))))\})
7. k : \mBbbN{}\msupplus{}
8. N : \mBbbN{}
9. \mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|x[n] - a| \mleq{} (r1/r(k))))
10. n : \mBbbN{}
11. imax(N;N1) \mleq{} n
\mvdash{} |y[n] - a| \mleq{} (r1/r(k))
By
Latex:
(FLemma `imax\_lb` [-1] THEN Auto)
Home
Index