Nuprl Lemma : upper-bound_functionality
∀[A:Set(ℝ)]. ∀[b,c:ℝ].  {A ≤ c supposing A ≤ b} supposing b ≤ c
Proof
Definitions occuring in Statement : 
upper-bound: A ≤ b, 
rset: Set(ℝ), 
rleq: x ≤ y, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}
Definitions unfolded in proof : 
upper-bound: A ≤ b, 
guard: {T}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
prop: ℙ, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
and: P ∧ Q
Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}[b,c:\mBbbR{}].    \{A  \mleq{}  c  supposing  A  \mleq{}  b\}  supposing  b  \mleq{}  c
Date html generated:
2020_05_20-AM-11_27_41
Last ObjectModification:
2020_01_06-PM-00_19_44
Theory : reals
Home
Index