Step
*
1
2
of Lemma
weak-continuity-principle-interval
1. u : ℝ
2. v : ℝ
3. x : {x:ℝ| x ∈ [u, v]}
4. (u ≤ x) ∧ (x ≤ v)
5. F : {x:ℝ| x ∈ [u, v]} ⟶ 𝔹
6. G : n:ℕ+ ⟶ {y:ℝ| (x = y ∈ (ℕ+n ⟶ ℤ)) ∧ (y ∈ [u, v])}
7. ∃n:ℕ+ [F interval-retraction(u;v;interval-retraction(u;v;x))
= F interval-retraction(u;v;interval-retraction(u;v;G n))]
⊢ ∃z:{x:ℝ| x ∈ [u, v]} . (∃n:ℕ+ [(F interval-retraction(u;v;interval-retraction(u;v;x)) = F z ∧ (z = (G n)))])
BY
{ (ExRepD
THEN D 0 With ⌜interval-retraction(u;v;interval-retraction(u;v;G n))⌝
THEN Auto
THEN UseWitness ⌜n⌝⋅
THEN DSetVars
THEN MemTypeCD
THEN Auto) }
Latex:
Latex:
1. u : \mBbbR{}
2. v : \mBbbR{}
3. x : \{x:\mBbbR{}| x \mmember{} [u, v]\}
4. (u \mleq{} x) \mwedge{} (x \mleq{} v)
5. F : \{x:\mBbbR{}| x \mmember{} [u, v]\} {}\mrightarrow{} \mBbbB{}
6. G : n:\mBbbN{}\msupplus{} {}\mrightarrow{} \{y:\mBbbR{}| (x = y) \mwedge{} (y \mmember{} [u, v])\}
7. \mexists{}n:\mBbbN{}\msupplus{} [F interval-retraction(u;v;interval-retraction(u;v;x))
= F interval-retraction(u;v;interval-retraction(u;v;G n))]
\mvdash{} \mexists{}z:\{x:\mBbbR{}| x \mmember{} [u, v]\}
(\mexists{}n:\mBbbN{}\msupplus{} [(F interval-retraction(u;v;interval-retraction(u;v;x)) = F z \mwedge{} (z = (G n)))])
By
Latex:
(ExRepD
THEN D 0 With \mkleeneopen{}interval-retraction(u;v;interval-retraction(u;v;G n))\mkleeneclose{}
THEN Auto
THEN UseWitness \mkleeneopen{}n\mkleeneclose{}\mcdot{}
THEN DSetVars
THEN MemTypeCD
THEN Auto)
Home
Index