Step * 1 2 1 1 2 1 2 1 of Lemma converges-to-rexp

.....assertion..... 
1. : ℤ
2. 0 < m
3. e^r(m 1) ≤ r(3^m 1)
4. e^r(m) (e^r(m 1) e^r1)
⊢ e^r1 < r(3)
BY
(D With ⌜12⌝  THEN Auto) }

1
1. : ℤ
2. 0 < m
3. e^r(m 1) ≤ r(3^m 1)
4. e^r(m) (e^r(m 1) e^r1)
⊢ (e^r1 12) 4 < r(3) 12


Latex:


Latex:
.....assertion..... 
1.  m  :  \mBbbZ{}
2.  0  <  m
3.  e\^{}r(m  -  1)  \mleq{}  r(3\^{}m  -  1)
4.  e\^{}r(m)  =  (e\^{}r(m  -  1)  *  e\^{}r1)
\mvdash{}  e\^{}r1  <  r(3)


By


Latex:
(D  0  With  \mkleeneopen{}12\mkleeneclose{}    THEN  Auto)




Home Index