Step
*
of Lemma
cosh-ge-1
∀[x:ℝ]. (r1 ≤ cosh(x))
BY
{ (Auto
THEN (Assert r0 ≤ sinh(x)^2 BY
Auto)
THEN (Assert r1 ≤ cosh(x)^2 BY
(nRAdd ⌜-(sinh(x)^2)⌝ 0⋅ THEN Fold `rsub` 0 THEN RWO "cosh2-sinh2" 0 THEN Auto))) }
1
1. x : ℝ
2. r0 ≤ sinh(x)^2
3. r1 ≤ cosh(x)^2
⊢ r1 ≤ cosh(x)
Latex:
Latex:
\mforall{}[x:\mBbbR{}]. (r1 \mleq{} cosh(x))
By
Latex:
(Auto
THEN (Assert r0 \mleq{} sinh(x)\^{}2 BY
Auto)
THEN (Assert r1 \mleq{} cosh(x)\^{}2 BY
(nRAdd \mkleeneopen{}-(sinh(x)\^{}2)\mkleeneclose{} 0\mcdot{} THEN Fold `rsub` 0 THEN RWO "cosh2-sinh2" 0 THEN Auto)))
Home
Index