Step
*
of Lemma
derivative-sinh
d(sinh(x))/dx = λx.cosh(x) on (-∞, ∞)
BY
{ (RepUR ``sinh cosh`` 0 THEN Assert ⌜d(e^-(x))/dx = λx.r(-1) * e^-(x) on (-∞, ∞)⌝⋅) }
1
.....assertion.....
d(e^-(x))/dx = λx.r(-1) * e^-(x) on (-∞, ∞)
2
1. d(e^-(x))/dx = λx.r(-1) * e^-(x) on (-∞, ∞)
⊢ d((expr(x) - expr(-(x)))/2)/dx = λx.(expr(x) + expr(-(x)))/2 on (-∞, ∞)
Latex:
Latex:
d(sinh(x))/dx = \mlambda{}x.cosh(x) on (-\minfty{}, \minfty{})
By
Latex:
(RepUR ``sinh cosh`` 0 THEN Assert \mkleeneopen{}d(e\^{}-(x))/dx = \mlambda{}x.r(-1) * e\^{}-(x) on (-\minfty{}, \minfty{})\mkleeneclose{}\mcdot{})
Home
Index